COMPSs

s 111

COMPSs Manual

Workflows and Distributed Computing Group

Barcelona
Supercomputing

Center

Centro Nacional de Supercomputacion

Last updated : November, 2021

Online version available at COMPSs - ReadTheDocs

https://compss-doc.readthedocs.io/en/latest/

Table of contents

Table of contents
List of figures
List of tables

1 What is COMPSs?
1.1 More information:

2 Quickstart

2.1 Install COMPSS e
2.2 Write your first app e
2.3 Useful information

3 Installation and Administration

3.1 Dependencies e e e
3.1.1 Build Dependencies
3.1.2 Optional Dependencies

3.2 Building from sources L
3.2.1 Postinstallationo L e

3.3 PIp . o e
3.3.1 Pre-requisites e e e
3.3.2 Imstallation
3.3.3 Post installation L

3.4 Supercomputers e e e e e
3.4.1 Prerequisites e e
3.4.2 Imstallation L e
3.4.3 Configuration e e
3.4.4 Post installationo

3.5 Additional Configuration
3.5.1 Configure SSH passwordless L
3.5.2 Configure the COMPSs Cloud Connectors v

3.6 Configuration Files e
3.6.1 Resourcesfile
3.6.2 Project file e
3.6.3 Configuration examples L L

4 Application development

A1 Java . .o e e e e
4.1.1 Programming Model e
4.1.2 Application Compilation L
4.1.3 Application Execution

4.2 Python Binding L

4.2.1 Programming Model e

4.2.2 Application Execution
4.2.3 Integration with Jupyter notebook oL oL
4.2.4 Integration with Numba e
43 C/CH++ Binding
4.3.1 Programming Model e
4.3.2 Use of programming models inside tasks L.
4.3.3 Application Compilation
4.3.4 Application Execution L
4.3.5 Task Dependency Graph e
4.4 Constraints e e

Execution Environments

5.1 Master-Worker Deployments L L
5.1.1 Local o e e e
5.1.2 Supercomputers e e
5.1.3 Docker e e e e e e e
5.1.4 Chameleon e
5.1.5 Jupyter Notebook L

5.2 Agents Deployments e
5.2.1 Local e e e
5.2.2 Supercomputers e e

5.3 Schedulers L

Tracing

6.1 COMPSs applications tracing
6.1.1 Basic Mode
6.1.2 Advanced Mode
6.1.3 Trace for Agents
6.1.4 Custom Installation and Configuration

6.2 Visualization L e e e e
6.2.1 Trace Loading L
6.2.2 Configurations L L e
6.2.3 View Adjustment

6.3 Interpretation L L e

6.4 Analysis e
6.4.1 Graphical Analysis
6.4.2 Numerical Analysis L

6.5 PAPIL: Hardware Counters i

6.6 Paraver: configurations. oL

6.7 User Events in Python o
6.7.1 Eventsin main code e e e e
6.7.2 Eventsin task code.
6.7.3 Result trace e
6.7.4 Practical example L e

Persistent Storage

7.1 First steps . . . o o o e e e
7.1.1 Defining the data model
7.1.2 Interacting with the persistent storage L Lo
7.1.3 Running with persistent storage L o

7.2 COMPSs + dataClay e
7.2.1 COMPSs + dataClay Dependencies
7.2.2 Enabling COMPSs applications with dataClay
7.2.3 Executing a COMPSs application with dataClay

7.3 COMPSs + Hecuba e
7.3.1 COMPSs + Hecuba Dependencies
7.3.2 Enabling COMPSs applications with Hecuba

7.3.3 Executing a COMPSs application with Hecuba

7.4 COMPSs + Redis

7.4.1 COMPSs + Redis Dependencies
7.4.2 Enabling COMPSs applications with Redis
7.4.3 Executing a COMPSs application with Redis,
7.5 Implement your own Storage interface for COMPSs,
7.5.1 Generic Storage Object Interface
7.5.2 Generic Storage Runtime Interfaces L o oL
7.5.3 Storage Interface usage

Sample Applications

8.1 Java Sample applications
8.1.1 Hello World e
8.1.2 Simple L e
8.1.3 Increment L e
8.1.4 Matrix multiplication L e
8.1.5 Sparse LU decomposition
8.1.6 BLAST Workflow e

8.2 Python Sample applications
8.2.1 Simple L e
8.2.2 Incremento L e
8.2.3 Kmeans e e e
8.2.4 Kmeans with Persistent Storage L
8.2.5 Matmul e e e
8.2.6 Lysozyme in water L

8.3 C/C++ Sample applications e
8.3.1 Simple L e
8.3.2 Increment e e

PyCOMPSs Player

9.1 Requirements and Installation oL L
9.1.1 Requirements e e e e e
9.1.2 Imstallation L

9.2 Usage i e
9.2.1 Start COMPSs infrastructure in your development directory
9.2.2 Running applications L e e e
9.2.3 Running the COMPSs monitor
9.2.4 Running Jupyter notebooks Lo
9.2.5 Generating the task graph oL oL
9.2.6 Tracing applications or notebooks Lo L Lo
9.2.7 Adding more nodes L L
9.2.8 Removing existing nodes L
9.2.9 Stop PyCOmPSS i e e e e

10 PyCOMPSs Notebooks

10.1 Syntax . . . o oL e
10.1.1 Basics of programming with PyCOMPSs
10.1.2 PyCOMPSs: Synchronization
10.1.3 PyCOMPSs: Using objects, lists, and synchronization
10.1.4 PyCOMPSs: Using objects, lists, and synchronization
10.1.5 PyCOMPSs: Using objects, lists, and synchronization. Using collections.
10.1.6 PyCOMPSs: Using objects, lists, and synchronization. Using dictionary.
10.1.7 PyCOMPSs: Using objects, lists, and synchronization. Managing fault-tolerance.
10.1.8 PyCOMPSs: Using files o e
10.1.9 PyCOMPSs: Using constraints o vt
10.1.10 PyCOMPSs: Polymorphism
10.1.11 PyCOMPSs: Other decorators - Binaryo oo v i v i ..
10.1.12PyCOMPSs: Integration with Numba o0 .
10.1.13Dislib tutorialo
10.1.14 Machine Learning with dislib o

10.2 Hands-0omn o o e e e e e 326

10.2.1 Sort by Key o o o e 326
10.2.2 KMeans o o e 330
10.2.3 KMeans with Reduce o 334
10.2.4 Cholesky Decomposition/Factorization o 338
10.2.5 Wordcount Exercise Lo 342
10.2.6 Wordcount Solution e 344
10.2.7 Wordcount Solution (With reduce) 347

10.3 Demos o e e e e e 350
10.3.1 Accelerating parallel code with PyCOMPSs and Numba 351

11 Troubleshooting 359
11.1 How todebug o . e 359
11.1.1 Java examples oL e e 360
11.1.2 Python examples o e e e e e 360
11.1.3 C/CH+ exampleso oo e 364

11.2 Common Issues o e 364
11.2.1 Tasks are not executed L 364
11.2.2 Jobs fail o e 364
11.2.3 Exceptions when starting the Worker processes 365
11.2.4 Compilation error: @Method not found Lo 365
11.2.5 Jobs failed on method reflection 366
11.2.6 Jobs failed on reflect target invocation null pointer 0oL 367
11.2.7 Tracing merge failed: too many open files oo 367
11.2.8 Performance issues L e 368

11.3 Memory Profiling e 369
11.3.1 Advanced profiling L e 369

11.4 Known Limitations o . o 0 e e 370
11.4.1 Global oL e 370
11.4.2 With Java Applications 370
11.4.3 With Python Applications 371

11.4.4 With Services o o o o 372

List of figures

[\

10
11
12
13
14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

The dependency graph of the increment application 14
Trace of the increment application L 15
Matmul Execution Graph. e 20
Structure of COMPSs queue scripts. In Blue user scripts, in Green queue scripts and in Orange

system dependant scripts L. oL oL Lo e e 33
Cluster example e 44
Matmul Execution Graph. e 118
Output generated by the execution of the Simple Java application with COMPSs 132
Sequential execution of the Hello java application, 132
COMPSs execution of the Hello java application 133
Structure of the logs folder for the Simple java application in off mode 133
Structure of the logs folder for the Simple java application in info mode 134
runtime.log generated by the execution of the Simple java application 134
resources.log generated by the execution of the Simple java application 135
Structure of the logs folder for the Simple java application in debug mode 135
The dependency graph of the SparseLLU application, 135
COMPSs Monitor start command 136
COMPSs monitoring interface L L 137
Logs generated by the Simple java application with the monitoring flag enabled 138
COMPSs Monitor login for Supercomputers oo 155
COMPSs Monitor main page for a test application at Supercomputers 156
Result and log folders of a Matmul execution with COMPSs and Docker 159
Basic mode tracefile for a k-means algorithm visualized with compss runtime.cfg 181
Advanced mode tracefile for a testing program showing the total completed instructions 183
Paraver menu Lo e 187
Kmeans Trace file e 187
Paraver view adjustment: View Event Flagso oL 188
Paraver view adjustment: Show info panelo o oo 189
Paraver view adjustment: Zoom configuration oL oL Lo 189
Paraver view adjustment: Zoom result L 189
Trace interpretation oL L e 190
Basic trace view of a Kmeans execution. L Lo 191
Data dependencies graph of a Kmeans execution. 0L 191
Zoomed in view of a Kmeans execution (first iteration).o L. 191
Original sample trace of a Kmeans execution to be analyzed 192
Paraver Menu - New Histogram L 192
Histogram configuration (Accept default values) Lo L 193
Kmeans histogram corresponding to previous trace Lo 193
Kmeans numerical histogram corresponding to previous trace 193

39
40
41
42

43

44
45
46
47
48
49
50
51
52
53

54

Paraver window properties button Lo Lo 194

Paraver histogram options menu oL 195
Kmeans histogram with the number of bursts 0oL 195
User events trace file 201
COMPSs with persistent storage architecture 203
Java increment tasks graph oL Lo 229
Matrix multiplication L e e e 229
Sparse LU decomposition 231
The COMPSs Blast workflow 233
Python increment tasks grapho oo 238
Python kmeans tasks graph e 244
Python matrix multiplication tasks graph L 254
Python Lysozyme in Water tasks graph oo 261
1xyw Potential result (plotted with GRACE) 262
Cincrement tasks graph L Lo 272

mprof plot example L 369

List of tables

N O U W N

10
11
12
13
14
15

16

17
18
19

20
21
22
23
24
25

COMPSs dependencies 0 e e e 23
Connector supported properties in the project.xml file 53
Properties supported by any SSH based connector in the project.xml file 53
rOCCI extensions in the project.xml file oo oL 54
Configuration of the <resources>.xml templates file, 54
JClouds extensions in the <project>.xml file oo oL 54
Mesos connector options in the <project>.xml file o oL, 95
Arguments of the @task decorator 81
Supported StdIOStreams for the @binary, @ompss and @mpi decorators 91
File parameters definition shortcuts Lo 92
COMPSs Python API functions 99
PyCOMPSs start function for Jupyter notebook 102
PyCOMPSs stop function for Jupyter notebook L. 103
Arguments of the @constraint decorator e 120
Arguments of the @Processor decorator e 121
Schedulers e 174
General paraver configurations for COMPSs Applications 197
Available paraver configurations for Python events of COMPSs Applications 198
Available paraver configurations for COMPSs Applications 198
Available methods from StorageObject L 205
Available methods from StorageObject in Python o ... 207
Available methods from StorageObject L 213
SCO object definition L e 216
Java APL . . L 218
Python API e 220

vii

COMPSs Documentation, 2.9

COMP Superscalar (COMPSs) is a task-based programming model which aims to ease the development
of applications for distributed infrastructures, such as large High-Performance clusters (HPC), clouds and con-
tainer managed clusters. COMPSs provides a programming interface for the development of the applications
and a runtime system that exploits the inherent parallelism of applications at execution time.

To improve programming productivity, the COMPSs programming model has following characteristics:

e Agnostic of the actual computing infrastructure: COMPSs offers a model that abstracts the application
from the underlying distributed infrastructure. Hence, COMPSs programs do not include any detail that
could tie them to a particular platform, like deployment or resource management. This makes applications
portable between infrastructures with diverse characteristics.

e Single memory and storage space: the memory and file system space is also abtracted in COMPSs,
giving the illusion that a single memory space and single file system is available. The runtime takes care of
all the necessary data transfers.

e Standard programming languages: COMPSs is based on the popular programming language Java, but
also offers language bindings for Python (PyCOMPSs) and C/C++ applications. This makes it easier to
learn the model since programmers can reuse most of their previous knowledge.

e No APIs: In the case of COMPSs applications in Java, the model does not require to use any special API
call, pragma or construct in the application; everything is pure standard Java syntax and libraries. With
regard the Python and C/C++ bindings, a small set of API calls should be used on the COMPSs applications.

This manual is divided in 9 sections:

http://compss.bsc.es

COMPSs Documentation, 2.9

Chapter 1

What 1s COMPSs?

COMP Superscalar (COMPSs) is a task-based programming model which aims to ease the development
of applications for distributed infrastructures, such as large High-Performance clusters (HPC), clouds and con-
tainer managed clusters. COMPSs provides a programming interface for the development of the applications
and a runtime system that exploits the inherent parallelism of applications at execution time.

To improve programming productivity, the COMPSs programming model has following characteristics:

e Sequential programming: COMPSs programmers do not need to deal with the typical duties of paral-
lelization and distribution, such as thread creation and synchronization, data distribution, messaging or fault
tolerance. Instead, the model is based on sequential programming, which makes it appealing to users that
either lack parallel programming expertise or are looking for better programmability.

e Agnostic of the actual computing infrastructure: COMPSs offers a model that abstracts the application
from the underlying distributed infrastructure. Hence, COMPSs programs do not include any detail that
could tie them to a particular platform, like deployment or resource management. This makes applications
portable between infrastructures with diverse characteristics.

e Single memory and storage space: the memory and file system space is also abtracted in COMPSs,
giving the illusion that a single memory space and single file system is available. The runtime takes care of
all the necessary data transfers.

e Standard programming languages: COMPSs is based on the popular programming language Java, but
also offers language bindings for Python (PyCOMPSs) and C/C++ applications. This makes it easier to
learn the model since programmers can reuse most of their previous knowledge.

e No APIs: In the case of COMPSs applications in Java, the model does not require to use any special API
call, pragma or construct in the application; everything is pure standard Java syntax and libraries. With
regard the Python and C/C++ bindings, a small set of API calls should be used on the COMPSs applications.

PyCOMPSs/COMPSs can be seen as a programming environment for the development of complex work-
flows. For example, in the case of PyCOMPSs, while the task-orchestration code needs to be written in Python, it
supports different types of tasks, such as Python methods, external binaries, multi-threaded (internally parallelised
with alternative programming models such as OpenMP or pthreads), or multi-node (MPI applications). Thanks
to the use of Python as programming language, PyCOMPSs naturally integrates well with data analytics and
machine learning libraries, most of them offering a Python interface. PyCOMPSs also supports reading/writing
streamed data.

At a lower level, the COMPSs runtime manages the execution of the workflow components implemented with
the PyCOMPSs programming model. At runtime, it generates a task-dependency graph by analysing the
existing data dependencies between the tasks defined in the Python code. The task-graph encodes the existing
parallelism of the workflow, which is then scheduled and executed by the COMPSs runtime in the computing
resources.

The COMPSs runtime is also able to react to tasks failures and to exceptions in order to adapt the behaviour
accordingly. These functionalities, offer the possibility of designing a new category of workflows with very
dynamic behaviour, that can change their configuration at execution time upon the occurrence of given events.

COMPSs Documentation, 2.9

1.1 More information:

e Project website: http://compss.bsc.es
e Project repostory: https://github.com/bsc-wdc/compss

4 Chapter 1. What is COMPSs?

http://compss.bsc.es
https://github.com/bsc-wdc/compss

Chapter 2

Quickstart

2.1 Install COMPSs

e Choose the installation method:

Pip - Local to the user

Requirements:

- Ensure that the required system Dependencies are installed.

- Check that your JAVA_HOME environment variable points to the Java JDK folder, that the GRADLE_HOME
environment variable points to the GRADLE folder, and the gradle binary is in the PATH environment variable.

- Enable SSH passwordless to localhost. See Configure SSH passwordless.

COMPSs will be installed within the $HOME/.local/ folder (or alternatively within the active virtual
environment).

$ pip install pycompss -v

Important: Please, update the environment after installing COMPSs:

$ source ~/.bashrc # or alternatively reboot the machine

If installed within a virtual environment, deactivate and activate it to ensure that the environment is
propperly updated.

Warning: If using Ubuntu 18.04 or higher, you will need to comment some lines of your .bashrc
and do a complete logout. Please, check the Post installation Section for detailed instructions.

See Installation and Administration section for more information

COMPSs Documentation, 2.9

Pip - Systemwide

Requirements:

- Ensure that the required system Dependencies are installed.

- Check that your JAVA_HOME environment variable points to the Java JDK folder, that the GRADLE_HOME
environment variable points to the GRADLE folder, and the gradle binary is in the PATH environment variable.

- Enable SSH passwordless to localhost. See Configure SSH passwordless.

COMPSs will be installed within the /usr/1ib64/pythonX.Y/site-packages/pycompss/ folder.

$ sudo -E pip install pycompss -v

Important: Please, update the environment after installing COMPSs:

$ source /etc/profile.d/compss.sh # or alternatively reboot the machine

Warning: If using Ubuntu 18.04 or higher, you will need to comment some lines of your .bashrc
and do a complete logout. Please, check the Post installation Section for detailed instructions.

See Installation and Administration section for more information

Build from sources - Local to the user

Requirements:

- Ensure that the required system Dependencies are installed.

- Check that your JAVA_HOME environment variable points to the Java JDK folder, that the GRADLE_HOME
environment variable points to the GRADLE folder, and the gradle binary is in the PATH environment variable.

- Enable SSH passwordless to localhost. See Configure SSH passwordless.

COMPSs will be installed within the $H0ME/COMPSs/ folder.

git clone https://github.com/bsc-wdc/compss.git
cd compss

./submodules_get.sh

./submodules_patch.sh

cd builders/

export INSTALL_DIR=$HOME/COMPSs/

./buildlocal ${INSTALL_DIR}

P H P P PH P P

6 Chapter 2. Quickstart

COMPSs Documentation, 2.9

The different installation options can be found in the command help.

$./buildlocal -h

Please, check the Post installation Section.

See Installation and Administration section for more information

Build from sources - Systemwide

Requirements:

- Ensure that the required system Dependencies are installed.

- Check that your JAVA_HOME environment variable points to the Java JDK folder, that the GRADLE_HOME
environment variable points to the GRADLE folder, and the gradle binary is in the PATH environment variable.

- Enable SSH passwordless to localhost. See Configure SSH passwordless.

COMPSs will be installed within the /opt/COMPSs/ folder.

git clone https://github.com/bsc-wdc/compss.git
cd compss

./submodules_get.sh

./submodules_patch.sh

cd builders/

export INSTALL_DIR=/opt/COMPSs/

sudo -E ./buildlocal ${INSTALL_DIR}

Hh PH P P P BH P

The different installation options can be found in the command help.

$./buildlocal -h

Please, check the Post installation Section.

See Installation and Administration section for more information

Supercomputer

Please, check the Supercomputers section.

2.1. Install COMPSs 7

COMPSs Documentation, 2.9

Docker - PyCOMPSs Player

Requirements:

- docker >= 17.12.0-ce
- Python 3

- pip

- docker for python

Since the PyCOMPSs player package is available in Pypi (pycompss-player), it can be easly installed with pip as
follows:

$ python3 -m pip install pycompss-player

A complete guide about the PyCOMPSs Player installation and usage can be found in the PyCOMPSs Player
Section.

Tip: Please, check the PyCOMPSs player Installation Section for the further information with regard
to the requirements installation and troubleshooting.

2.2 Write your first app

Choose your flavour:

Java

Application Overview

A COMPSs application is composed of three parts:

e Main application code: the code that is executed sequentially and contains the calls to the user-selected
methods that will be executed by the COMPSs runtime as asynchronous parallel tasks.

¢ Remote methods code: the implementation of the tasks.

e Task definition interface: It is a Java annotated interface which declares the methods to be run as remote
tasks along with metadata information needed by the runtime to properly schedule the tasks.

The main application file name has to be the same of the main class and starts with capital letter, in this
case it is Simple.java. The Java annotated interface filename is application name + Itf.java, in this case it is
Simpleltf.java. And the code that implements the remote tasks is defined in the application name + Impl.java
file, in this case it is SimpleImpl.java.

All code examples are in the /home/compss/tutorial_apps/java/ folder of the development environment.

8 Chapter 2. Quickstart

https://www.docker.com
https://pypi.org/project/docker/
https://pypi.org/project/pycompss-player/

COMPSs Documentation, 2.9

Main application code

In COMPSs, the user’s application code is kept unchanged, no API calls need to be included in the main application
code in order to run the selected tasks on the nodes.

The COMPSs runtime is in charge of replacing the invocations to the user-selected methods with the creation of
remote tasks also taking care of the access to files where required. Let’s consider the Simple application example
that takes an integer as input parameter and increases it by one unit.

The main application code of Simple application is shown in the following code block. It is executed sequentially
until the call to the increment() method. COMPSs, as mentioned above, replaces the call to this method with
the generation of a remote task that will be executed on an available node.

Code 1: Simple in Java (Simple.java)

package simple;

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import simple.SimpleImpl;

public class Simple {
public static void main(String[] args) {

String counterName = '"counter";
int initialValue = args[0];

F A e e EEE R LT //
// Creation of the file which will contain the counter wvariable //
e //
try {

FileOutputStream fos = new FileOutputStream(counterName) ;
fos.write(initialValue) ;
System.out.println("Initial counter value is " + initialValue);
fos.close();

}catch(IOException ioe) {
ioe.printStackTrace();

}

F R e e E L L e //
// Ezecution of the program //
/e //
SimpleImpl.increment (counterName) ;

F A e e T //
// Reading from an object stored in a File //
/e //
try {

FileInputStream fis = new FileInputStream(counterName) ;
System.out.println("Final counter value is " + fis.read());
fis.close();

}catch(IOException ioe) {
ioe.printStackTrace();

}

}
}

2.2. Write your first app 9

COMPSs Documentation, 2.9

Remote methods code

The following code contains the implementation of the remote method of the Simple application that will be
executed remotely by COMPSs.

Code 2: Simple Implementation (Simplelmpl.java)

package simple;

import java.io.FileInputStream;
import java.io.FileOutputStream;

import java.io.IOException;
import java.io.FileNotFoundException;

public class SimpleImpl {
public static void increment(String counterFile) {
try{
FileInputStream fis = new FileInputStream(counterFile);
int count = fis.read();
fis.close();
FileOutputStream fos = new FileOutputStream(counterFile);
fos.write(++count);
fos.close();
}catch(FileNotFoundException fnfe){
fnfe.printStackTrace();
}catch(IOException ioe){
ioe.printStackTrace();
}
}
}

Task definition interface

This Java interface is used to declare the methods to be executed remotely along with Java annotations that specify
the necessary metadata about the tasks. The metadata can be of three different types:

1. For each parameter of a method, the data type (currently File type, primitive types and the String type are
supported) and its directions (IN, OUT, INOUT, COMMUTATIVE or CONCURRENT).

2. The Java class that contains the code of the method.

3. The constraints that a given resource must fulfill to execute the method, such as the number of processors
or main memory size.

The task description interface of the Simple app example is shown in the following figure. It includes the description
of the Increment() method metadata. The method interface contains a single input parameter, a string containing
a path to the file counterFile. In this example there are constraints on the minimum number of processors and
minimum memory size needed to run the method.

Code 3: Interface of the Simple application (Simpleltf.java)

package simple;

import es.bsc.compss.types.annotations.Constraints;

import es.bsc.compss.types.annotations.task.Method;

import es.bsc.compss.types.annotations.Parameter;

import es.bsc.compss.types.annotations.parameter.Direction;
import es.bsc.compss.types.annotations.parameter.Type;

public interface SimpleItf {

(continues on next page)

10 Chapter 2. Quickstart

COMPSs Documentation, 2.9

(continued from previous page)

@Constraints(computingUnits = "1", memorySize = "0.3")
@Method(declaringClass = "simple.SimpleImpl")
void increment(
@Parameter (type = Type.FILE, direction = Direction.INOUT)
String file
)3

Application compilation

A COMPSs Java application needs to be packaged in a jar file containing the class files of the main code, of
the methods implementations and of the [tf annotation. This jar package can be generated using the commands
available in the Java SDK or creating your application as a Apache Maven project.

To integrate COMPSs in the maven compile process you just need to add the compss-api artifact as dependency
in the application project.

<dependencies>
<dependency>
<groupId>es.bsc.compss</groupld>
<artifactId>compss-api</artifactId>
<version>${compss.version}</version>
</dependency>
</dependencies>

To build the jar in the maven case use the following command

$ mvn package

Next we provide a set of commands to compile the Java Simple application (detailed at Java Sample applications).

$ cd tutorial_apps/java/simple/src/main/java/simple/
$~/tutorial_apps/java/simple/src/main/java/simple$ javac *.java
$~/tutorial_apps/java/simple/src/main/java/simple$ cd ..
$~/tutorial_apps/java/simple/src/main/java$ jar cf simple.jar simple/
$~/tutorial_apps/java/simple/src/main/java$ mv ./simple.jar ../../../jar/

In order to properly compile the code, the CLASSPATH variable has to contain the path of the compss-engine.jar
package. The default COMPSs installation automatically add this package to the CLASSPATH; please check
that your environment variable CLASSPATH contains the compss-engine.jar location by running the following
command:

$ echo $CLASSPATH | grep compss-engine

If the result of the previous command is empty it means that you are missing the compss-engine.jar package in
your classpath. We recommend to automatically load the variable by editing the .bashrc file:

$ echo "# COMPSs variables for Java compilation" >> ~/.bashrc
$ echo "export CLASSPATH=$CLASSPATH:/opt/COMPSs/Runtime/compss-engine.jar" >> ~/.bashrc

2.2. Write your first app 11

COMPSs Documentation, 2.9

Application execution

A Java COMPSs application is executed through the runcompss script. An example of an invocation of the script
is:

$ runcompss --classpath=/home/compss/tutorial_apps/java/simple/jar/simple.jar simple.Simple 1

A comprehensive description of the runcompss command is available in the Executing COMPSs applications section.

In addition to Java, COMPSs supports the execution of applications written in other languages by means of
bindings. A binding manages the interaction of the no-Java application with the COMPSs Java runtime, providing
the necessary language translation.

Python
Let’s write your first Python application parallelized with PyCOMPSs. Consider the following code:

Code 4: increment.py

import time
from pycompss.api.api import compss_wait_on
from pycompss.api.task import task

O@task(returns=1)

def increment(value):
time.sleep(value * 2) # mimic some computational time
return value + 1

def main():
values = [1, 2, 3, 4]
start = time.time()
for pos in range(len(values)):
values [pos] = increment(values[pos])
values = compss_wait_on(values)

assert values == [2, 3, 4, 5]

print(values)

print ("Elapsed time: " + str(time.time() - start_time))
if __name__=='__main__"':

main()

This code increments the elements of an array (values) by calling iteratively to the increment function. The
increment function sleeps the number of seconds indicated by the value parameter to represent some computational
time. On a normal python execution, each element of the array will be incremented after the other (sequentially),
accumulating the computational time. PyCOMPSs is able to parallelize this loop thanks to its @task decorator,
and synchronize the results with the compss_wait_on API call.

Note: If you are using the PyCOMPSs player (pycompss-player), it is time to deploy the COMPSs environment
within your current folder:

$ pycompss init

Please, be aware that the first time needs to download the docker image from the repository, and it may take a
while.

Copy and paste the increment code it into increment.py.

12 Chapter 2. Quickstart

https://pypi.org/project/pycompss-player/

COMPSs Documentation, 2.9

Execution

Now let’s execute increment.py. To this end, we will use the runcompss script provided by COMPSs:

$ runcompss -g increment.py
[Output in next step]

Or alternatively, the pycompss run command if using the PyCOMPSs player (which wraps the runcompss com-
mand and launches it within the COMPSs’ docker container):

$ pycompss run -g increment.py
[Output in next step]

Note: The -g flag enables the task dependency graph generation (used later).

The runcompss command has a lot of supported options that can be checked with the -h flag. They can also be
used within the pycompss run command.

Tip: It is possible to run also with the python command using the pycompss module, which accepts the same
flags as runcompss:

$ python -m pycompss -g increment.py # Parallel ezecution
[Output in next step]

Having PyCOMPSs installed also enables to run the same code sequentially without the need of removing the
PyCOMPSs syntax.

$ python increment.py # Sequential exzecution
[2, 3, 4, 5]
Elapsed time: 20.0161030293

Output

$ runcompss -g increment.py

[INFO] Inferred PYTHON language

[INFO] Using default location for project file: /opt/COMPSs/Runtime/configuration/xml/
wprojects/default_project.xml

[INFO] Using default location for resources file: /opt/COMPSs/Runtime/configuration/xml/
—resources/default_resources.xml

[INFO] Using default execution type: compss

WARNING: COMPSs Properties file is null. Setting default values

[(433) API] - Starting COMPSs Runtime v2.7 (build 20200519-1005.
—16093e5ac94d67250e097a6fad9d3ec00d676feb¢)

[2, 3, 4, 5]

Elapsed time: 11.5068922043

[(4389) API] - Execution Finished

Nice! it run successfully in my 8 core laptop, we have the expected output, and PyCOMPSs has been able to
run the increment.py application in almost half of the time required by the sequential execution. What happened
under the hood?

2.2. Write your first app 13

COMPSs Documentation, 2.9

COMPSs started a master and one worker (by default configured to execute up to four tasks at the same time)
and executed the application (offloading the tasks execution to the worker).

Let’s check the task dependency graph to see the parallelism that COMPSs has extracted and taken advantage of.

Task dependency graph

COMPSs stores the generated task dependecy graph within the $HOME/.COMPSs/<APP_NAME>_<00-99>/monitor
directory in dot format. The generated graph is complete_graph.dot file, which can be displayed with any dot
viewer.

Tip: COMPSs provides the compss_gengraph script which converts the given dot file into pdf.

$ cd $HOME/.COMPSs/increment.py_01/monitor
$ compss_gengraph complete_graph.dot
$ evince complete_graph.pdf # or use any other pdf viewer you like

It is also available within the PyCOMPSs player:

$ cd $HOME/.COMPSs/increment.py_01/monitor
$ pycompss gengraph complete_graph.dot
$ evince complete_graph.pdf # or use any other pdf viewer you like

And you should see:

main

2 3 4

Figure 1: The dependency graph of the increment application

COMPSs has detected that the increment of each element is independent, and consequently, that all of them can
be done in parallel. In this particular application, there are four increment tasks, and since the worker is able to
run four tasks at the same time, all of them can be executed in parallel saving precious time.

Check the performance

Let’s run it again with the tracing flag enabled:

$ runcompss -t increment.py

[INFO] Inferred PYTHON language

[INFO] Using default location for project file: /opt/COMPSs//Runtime/configuration/xml/
—projects/default_project.xml

[INFO] Using default location for resources file: /opt/COMPSs//Runtime/configuration/xml/
—resources/default_resources.xml

[INFO] Using default execution type: compss

(continues on next page)

14 Chapter 2. Quickstart

COMPSs Documentation, 2.9

(continued from previous page)

Welcome to Extrae 3.5.3
[... Extrae prolog ...]

WARNING: COMPSs Properties file is null. Setting default values

[(434) API] - Starting COMPSs Runtime v2.7 (build 20200519-1005.
—1r6093e5ac94d67250e097a6fad9d3ec00d676feb6C)
[2, 3, 4, 5]

Elapsed time: 13.1016821861

[... Extrae eplilog ...]

mpi2prv: Congratulations! ./trace/increment.py_compss_trace_1587562240.prv has been
—generated.

[(24117) API] - Execution Finished

The execution has finished successfully and the trace has been generated in the $HOME/.COMPSs/<APP_NAME>_-
<00-99>/trace directory in prv format, which can be displayed and analysed with PARAVER.

$ cd $HOME/.COMPSs/increment.py_02/trace
$ wxparaver increment.py_compss_trace_x.prv

Note: In the case of using the PyCOMPSs player, the trace will be generated in the .COMPSs/<APP_NAME>_ -
<00-99>/trace directory:

$ cd .COMPSs/increment.py_02/trace
$ wxparaver increment.py_compss_trace_*.prv

Once Paraver has started, lets visualize the tasks:

e Click in File and then in Load Configuration
e Look for /PATH/TO/COMPSs/Dependencies/paraver/cfgs/compss_tasks.cfg and click Open.

Note: In the case of using the PyCOMPSs player, the configuration files can be obtained by downloading them
from the COMPSs repositoy.

And you should see:

Compss Tasks @ increment.py_compss_trace_1587562240.prv

THREAD

Figure 2: Trace of the increment application

The X axis represents the time, and the Y axis the deployed processes (the first three (1.1.1-1.1.3) belong to
the master and the fourth belongs to the master process in the worker (1.2.1) whose events are shown with the
compss_runtime.cfg configuration file).

2.2. Write your first app 15

https://tools.bsc.es/paraver
https://github.com/bsc-wdc/compss/tree/stable/files/paraver/cfgs

COMPSs Documentation, 2.9

The increment tasks are depicted in blue. We can quickly see that the four increment tasks have been executed
in parallel (one per core), and that their lengths are different (depending on the computing time of the task
represented by the time.sleep(value * 2) line).

Paraver is a very powerful tool for performance analysis. For more information, check the Tracing Section.

Note: If you are using the PyCOMPSs player, it is time to stop the COMPSs environment:

$ pycompss stop

C/C++

Application Overview
As in Java, the application code is divided in 3 parts: the Task definition interface, the main code and task
implementations. These files must have the following notation,: <app ame>.idl, for the interface file, <app -

name>.cc for the main code and <app name>-functions.cc for task implementations. Next paragraphs provide
an example of how to define this files for matrix multiplication parallelised by blocks.

Task Definition Interface

As in Java the user has to provide a task selection by means of an interface. In this case the interface file has the
same name as the main application file plus the suffix “idl”, i.e. Matmul.idl, where the main file is called Matmul.cc.

Code 5: Matmul.idl

interface Matmul
{
// C functions
void initMatrix(inout Matrix matrix,
in int mSize,
in int nSize,
in double val);

void multiplyBlocks(inout Block blockl,
inout Block block2,
inout Block block3);
};

The syntax of the interface file is shown in the previous code. Tasks can be declared as classic C function prototypes,
this allow to keep the compatibility with standard C applications. In the example, initMatrix and multiplyBlocks
are functions declared using its prototype, like in a C header file, but this code is C+-+ as they have objects as
parameters (objects of type Matrix, or Block).

The grammar for the interface file is:

["static"] return-type task-name (parameter {, parameter }*);
return-type = "void" | type

ask-name = <qualified name of the function or method>

parameter = direction type parameter-name

direction = "in" | "out" | "inout"

(continues on next page)

16 Chapter 2. Quickstart

COMPSs Documentation, 2.9

(continued from previous page)

type = "char" | "int" | "short" | "long" | "float" | "double" | "boolean" |
"char[<size>]" | "int[<size>]" | "short[<size>]" | "long[<size>]" |
"float[<size>]" | "double[<size>]" | "string" | "File" | class-name

class-name = <qualified name of the class>

Main Program
The following code shows an example of matrix multiplication written in C++.

Code 6: Matrix multiplication

#anclude "Matmul.h"
#include "Matriz.h"
#1include "Block.h'"
int N; //MSIZE
int M; //BSIZE
double val;
int main(int argc, char **argv)
{
Matrix A;
Matrix B;
Matrix C;

N = atoi(argv[i]);
M = atoi(argv[2]);
val = atof (argv[3]);

compss_on();
A = Matrix::init(N,M,val);

initMatrix(&B,N,M,val);
initMatrix(&C,N,M,0.0);

cout << "Waiting for initialization...\n";

compss_wait_on(B);
compss_wait_on(C);

cout << "Initialization ends...\n";
C.multiply(A, B);

compss_off();
return O;

The developer has to take into account the following rules:

1. A header file with the same name as the main file must be included, in this case Matmul.h. This header
file is automatically generated by the binding and it contains other includes and type-definitions that are
required.

2. A call to the compss on binding function is required to turn on the COMPSs runtime.

3. Asin C language, out or inout parameters should be passed by reference by means of the “&” operator before
the parameter name.

2.2. Write your first app 17

COMPSs Documentation, 2.9

4. Synchronization on a parameter can be done calling the compss wait on binding function. The argument
of this function must be the variable or object we want to synchronize.

5. There is an implicit synchronization in the init method of Matrix. It is not possible to know the address
of “A” before exiting the method call and due to this it is necessary to synchronize before for the copy of the
returned value into “A” for it to be correct.

6. A call to the compss _off binding function is required to turn off the COMPSs runtime.

Functions file

The implementation of the tasks in a C or C++ program has to be provided in a functions file. Its name must be
the same as the main file followed by the suffix “-functions”. In our case Matmul-functions.cc.

#include "Matmul.h"
#include "Matriz.h"
#1include "Block.h"

void initMatrix(Matrix *matrix,int mSize,int nSize,double val){
fmatrix = Matrix::init(mSize, nSize, val);

}

void multiplyBlocks(Block #*blockl,Block *block2,Block *block3){
blockl->multiply(*¥block2, *block3);
}

In the previous code, class methods have been encapsulated inside a function. This is useful when the class method
returns an object or a value and we want to avoid the explicit synchronization when returning from the method.

Additional source files

Other source files needed by the user application must be placed under the directory “src”. In this directory
the programmer must provide a Makefile that compiles such source files in the proper way. When the binding
compiles the whole application it will enter into the src directory and execute the Makefile.

It generates two libraries, one for the master application and another for the worker application. The directive
COMPSS MASTER or COMPSS WORKER must be used in order to compile the source files for each type of
library. Both libraries will be copied into the lib directory where the binding will look for them when generating
the master and worker applications.

Application Compilation

The user command “compss__build _app” compiles both master and worker for a single architecture (e.g. x86-64,
armhf, etc). Thus, whether you want to run your application in Intel based machine or ARM based machine, this
command is the tool you need.

When the target is the native architecture, the command to execute is very simple;

$~/matmul _objects> compss_build_app Matmul

[INFO] Java libraries are searched in the directory: /usr/lib/jvm/java-1.8.0-openjdk-amd64//
—jre/lib/amd64/server

[INFO] Boost libraries are searched in the directory: /usr/lib/

[Info] The target host is: x86_64-linux-gnu

Building application for master...
g++ -g -03 -I. -I/Bindings/c/share/c_build/worker/files/ -c Block.cc Matrix.cc

(continues on next page)

18 Chapter 2. Quickstart

COMPSs Documentation, 2.9

(continued from previous page)

ar rvs libmaster.a Block.o Matrix.o
ranlib libmaster.a

Building application for workers...

g++ -DCOMPSS_WORKER -g -03 -I. -I/Bindings/c/share/c_build/worker/files/ -c Block.cc -o Block.
-0

g++ -DCOMPSS_WORKER -g -03 -I. -I/Bindings/c/share/c_build/worker/files/ -c Matrix.cc -oy
—Matrix.o

ar rvs libworker.a Block.o Matrix.o

ranlib libworker.a

Command successful.

Application Execution

The following environment variables must be defined before executing a COMPSs C/C++ application:
JAVA HOME Java JDK installation directory (e.g. /usr/lib/jvm/java-8-openjdk/)

After compiling the application, two directories, master and worker, are generated. The master directory contains
a binary called as the main file, which is the master application, in our example is called Matmul. The worker
directory contains another binary called as the main file followed by the suffix “-worker”, which is the worker
application, in our example is called Matmul-worker.

The runcompss script has to be used to run the application:

$ runcompss /home/compss/tutorial_apps/c/matmul_objects/master/Matmul 3 4 2.0

The complete list of options of the runcompss command is available in Section Fzecuting COMPSs applications.

Task Dependency Graph

COMPSs can generate a task dependency graph from an executed code. It is indicating by a

$ runcompss -g /home/compss/tutorial_apps/c/matmul_objects/master/Matmul 3 4 2.0

The generated task dependency graph is stored within the $HOME/.COMPSs/<APP_NAME>_<00-99>/monitor direc-
tory in dot format. The generated graph is complete_graph.dot file, which can be displayed with any dot viewer.
COMPSs also provides the compss_gengraph script which converts the given dot file into pdf.

$ cd $HOME/.COMPSs/Matmul_02/monitor
$ compss_gengraph complete_graph.dot
$ evince complete_graph.pdf # or use any other pdf viewer you like

The following figure depicts the task dependency graph for the Matmul application in its object version with 3x3
blocks matrices, each one containing a 4x4 matrix of doubles. Each block in the result matrix accumulates three
block multiplications, i.e. three multiplications of 4x4 matrices of doubles.

The light blue circle corresponds to the initialization of matrix “A” by means of a method-task and it has an
implicit synchronization inside. The dark blue circles correspond to the other two initializations by means of
function-tasks; in this case the synchronizations are explicit and must be provided by the developer after the task
call. Both implicit and explicit synchronizations are represented as red circles.

Each green circle is a partial matrix multiplication of a set of 3. One block from matrix “A” and the correspondent
one from matrix “B”. The result is written in the right block in “C” that accumulates the partial block multipli-

2.2. Write your first app 19

COMPSs Documentation, 2.9

N = 3, Matrix size
M = 4, Block size

Parallel tasks
[3x3] Matrix = 9 blocks

Each block
accumulates 3
[4x4] matrix
multiplications

Implicit
synchronization

Explicit
synchronizations

Figure 3: Matmul Execution Graph.

cations. Each multiplication set has an explicit synchronization. All green tasks are method-tasks and they are
executed in parallel.

2.3

Useful information

Choose your flavour:

Java

Syntax detailed information -> Java

Constraint definition -> Constraints

Execution details -> FEzecuting COMPSs applications

Graph, tracing and monitoring facilities -> COMPSs Tools

Other execution environments (Supercomputers, Docker, etc.) -> Supercomputers

Performance analysis -> Tracing

Troubleshooting -> Troubleshooting

Sample applications -> Java Sample applications

Using COMPSs with persistent storage frameworks (e.g. dataClay, Hecuba) -> Persistent Storage

Python

Syntax detailed information -> Python Binding

Constraint definition -> Constraints

Execution details -> FEzecuting COMPSs applications

Graph, tracing and monitoring facilities -> COMPSs Tools

Other execution environments (Supercomputers, Docker, etc.) -> Supercomputers

Performance analysis -> Tracing

Troubleshooting -> Troubleshooting

Sample applications -> Python Sample applications

Using COMPSs with persistent storage frameworks (e.g. dataClay, Hecuba) -> Persistent Storage

C/Crt

Syntax detailed information -> C/C++ Binding

Constraint definition -> Constraints

Execution details -> Ezecuting COMPSs applications

Graph, tracing and monitoring facilities -> COMPSs Tools

Other execution environments (Supercomputers, Docker, etc.) -> Supercomputers

20

Chapter 2. Quickstart

COMPSs Documentation, 2.9

e Performance analysis -> Tracing
e Troubleshooting -> Troubleshooting
e Sample applications -> C/C++ Sample applications

2.3. Useful information 21

COMPSs Documentation, 2.9

22 Chapter 2. Quickstart

Chapter 3

Installation and Administration

This section is intended to walk you through the COMPSs installation.

3.1 Dependencies

Next we provide a list of dependencies for installing COMPSs package. The exact names may vary depending
on the Linux distribution but this list provides a general overview of the COMPSs dependencies. For specific
information about your distribution please check the Depends section at your package manager (apt, yum, zypper,
etc.).

Table 1: COMPSs dependencies

Module Dependencies

COMPSs Run- | openjdk-8-jre, graphviz, xdg-utils, openssh-server

time

COMPSs Python | libtool, automake, build-essential, python (>= 2.7 | >=3.5), python-dev | python3-dev,
Binding python-setuptools|python3-setuptools, libpython2.7

COMPSs libtool, automake, build-essential, libboost-all-dev, libxml2-dev

C/C++ Binding
COMPSs Au- | libgmp3-dev, flex, bison, libbison-dev, texinfo, libffi-dev, astor, sympy, enum34, islpy
toparallel
COMPSs Trac- | libxml2 (>= 2.5), libxml2-dev (>= 2.5), gfortran, papi
ing

As an example for some distributions:
Ubuntu 20.04

Ubuntu 20.04 dependencies installation commands:

$ sudo apt-get install -y openjdk-8-jdk graphviz xdg-utils libtool automake build-essential,
—python python-dev libpython2.7 python3 python3-dev libboost-serialization-dev libboost-
—iostreams-dev 1libxml2 libxml2-dev csh gfortran libgmp3-dev flex bison texinfo python3-pip,
—libpapi-dev

$ sudo wget https://services.gradle.org/distributions/gradle-5.4.1-bin.zip -0 /opt/gradle-5.4.
—1-bin.zip

$ sudo unzip /opt/gradle-5.4.1-bin.zip -d /opt

Attention: Before installing it is important to have a proper JAVA_HOME environment variable definition.
This variable must contain a valid path to a Java JDK (as a remark, it must point to a JDK, not JRE). So,
please, export this variable and include it into your .bashrc:

23

COMPSs Documentation, 2.9

$ echo 'export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64/' >> ~/.bashrc
$ export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64/

Ubuntu 18.04

Ubuntu 18.04 dependencies installation commands:

$ sudo apt-get install -y openjdk-8-jdk graphviz xdg-utils libtool automake build-essential,
—python python-dev libpython2.7 python3 python3-dev libboost-serialization-dev libboost-
—iostreams-dev 1libxml2 libxml2-dev csh gfortran libgmp3-dev flex bison texinfo python3-pip,
—libpapi-dev

$ sudo wget https://services.gradle.org/distributions/gradle-5.4.1-bin.zip -0 /opt/gradle-5.4.
—1-bin.zip

$ sudo unzip /opt/gradle-5.4.1-bin.zip -d /opt

Attention: Before installing it is important to have a proper JAVA_HOME environment variable definition.
This variable must contain a valid path to a Java JDK (as a remark, it must point to a JDK, not JRE). So,
please, export this variable and include it into your .bashrc:

$ echo 'export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64/' >> ~/.bashrc
$ export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64/

Ubuntu 16.04

Ubuntu 16.04 dependencies installation commands:

$ sudo apt-get install -y openjdk-8-jdk graphviz xdg-utils libtool automake build-essential,
—python2.7 libpython2.7 libboost-serialization-dev libboost-iostreams-dev 1ibxml2 libxml2-
—dev csh gfortran python-pip libpapi-dev

$ sudo wget https://services.gradle.org/distributions/gradle-5.4.1-bin.zip -0 /opt/gradle-5.4.
—1-bin.zip

$ sudo unzip /opt/gradle-5.4.1-bin.zip -d /opt

Attention: Before installing it is important to have a proper JAVA_HOME environment variable definition.
This variable must contain a valid path to a Java JDK (as a remark, it must point to a JDK, not JRE). So,
please, export this variable and include it into your .bashrc:

$ echo 'export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64/' >> ~/.bashrc
$ export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64/

OpenSuse Tumbleweed

OpenSuse Tumbleweed dependencies installation commands:

$ sudo zypper install --type pattern -y devel_basis

$ sudo zypper install -y java-1_8_0-openjdk-headless java-1_8_0-openjdk java-1_8_0-openjdk-
—devel graphviz xdg-utils python python-devel python3 python3-devel python3-decorator
—1libtool automake libboost_headersl1_71_0-devel libboost_serializationl_71_0 libboost_
—iostreams1_71_0 1libxml2-2 libxml2-devel tcsh gcc-fortran papi libpapi gcc-c++ libpapi papi,
—papi-devel gmp-devel

$ sudo wget https://services.gradle.org/distributions/gradle-5.4.1-bin.zip -0 /opt/gradle-5.4.
—1-bin.zip

$ sudo unzip /opt/gradle-5.4.1-bin.zip -d /opt

24 Chapter 3. Installation and Administration

COMPSs Documentation, 2.9

Attention: Before installing it is important to have a proper JAVA_HOME environment variable definition.
This variable must contain a valid path to a Java JDK (as a remark, it must point to a JDK, not JRE). So,
please, export this variable and include it into your .bashrc:

$ echo 'export JAVA_HOME=/usr/1ib64/jvm/java-1.8.0-openjdk/' >> ~/.bashrc
$ export JAVA_HOME=/usr/1ib64/jvm/java-1.8.0-openjdk/

OpenSuse Leap 15.1

OpenSuse Leap 15.1 dependencies installation commands:

$ sudo zypper install --type pattern -y devel_basis

$ sudo zypper install -y java-1_8_0-openjdk-headless java-1_8_0-openjdk java-1_8_0-openjdk-
—devel graphviz xdg-utils python python-devel python-decorator python3 python3-devel python3-
—.decorator libtool automake libboost_headersl_66_0-devel libboost_serializationl_66_0
—libboost_iostreams1_66_0 1ibxml2-2 libxml2-devel tcsh gcc-fortran papi libpapi gcc-c++(,
—libpapi papi papi-devel gmp-devel

$ sudo wget https://services.gradle.org/distributions/gradle-5.4.1-bin.zip -0 /opt/gradle-5.4.
—1-bin.zip

$ sudo unzip /opt/gradle-5.4.1-bin.zip -d /opt

Attention: Before installing it is important to have a proper JAVA_HOME environment variable definition.
This variable must contain a valid path to a Java JDK (as a remark, it must point to a JDK, not JRE). So,
please, export this variable and include it into your .bashrc:

$ echo 'export JAVA_HOME=/usr/1ib64/jvm/java-1.8.0-openjdk/' >> ~/.bashrc
$ export JAVA_HOME=/usr/1ib64/jvm/java-1.8.0-openjdk/

OpenSuse 42.2

OpenSuse 42.2 dependencies installation commands:

$ sudo zypper install --type pattern -y devel_basis

$ sudo zypper install -y java-1_8_0-openjdk-headless java-1_8_0-openjdk java-1_8_0-openjdk-
—devel graphviz xdg-utils python python-devel libpython2_7-1_0 python-decorator libtool,
—automake boost-devel libboost_serializationl_54_0 libboost_iostreams1_54_0 libxml2-2
—1libxml2-devel tcsh gcc-fortran python-pip papi libpapi gcc-c++ libpapi papi papi-devel gmp-
—devel

$ sudo wget https://services.gradle.org/distributions/gradle-5.4.1-bin.zip -0 /opt/gradle-5.4.
—1-bin.zip

$ sudo unzip /opt/gradle-5.4.1-bin.zip -d /opt

Warning: OpenSuse provides Python 3.4 from its repositories, which is not supported by the COMPSs
python binding. Please, update Python 3 (python and python-devel) to a higher version if you expect to
install COMPSs from sources.

Alternatively, you can use a virtual environment.

Attention: Before installing it is important to have a proper JAVA_HOME environment variable definition.
This variable must contain a valid path to a Java JDK (as a remark, it must point to a JDK, not JRE). So,
please, export this variable and include it into your .bashrc:

$ echo 'export JAVA_HOME=/usr/1ib64/jvm/java-1.8.0-openjdk/' >> ~/.bashrc
$ export JAVA_HOME=/usr/1ib64/jvm/java-1.8.0-openjdk/

3.1. Dependencies 25

COMPSs Documentation, 2.9

Fedora 32

Fedora 32 dependencies installation commands:

$ sudo dnf install -y java-1.8.0-openjdk java-1.8.0-openjdk-devel graphviz xdg-utils libtool
—automake python27 python3 python3-devel boost-devel boost-serialization boost-iostreams
—1libxml2 libxml2-devel gcc gcc-c++ gcc-gfortran tcsh @development-tools bison flex texinfo
—papi papi-devel gmp-devel

$ # If the libzml softlink is not created during the installation of libzml2, the COMPSs,
—~1installation may fail.

$ # In this case, the softlink has to be created manually with the following command:

$ sudo 1ln -s /usr/include/1libxml2/libxml/ /usr/include/libxml

$ sudo wget https://services.gradle.org/distributions/gradle-5.4.1-bin.zip -0 /opt/gradle-5.4.
—1-bin.zip

$ sudo unzip /opt/gradle-5.4.1-bin.zip -d /opt

Attention: Before installing it is important to have a proper JAVA_HOME environment variable definition.
This variable must contain a valid path to a Java JDK (as a remark, it must point to a JDK, not JRE). So,
please, export this variable and include it into your .bashrc:

$ echo 'export JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk/' >> ~/.bashrc
$ export JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk/

Fedora 25

Fedora 25 dependencies installation commands:

$ sudo dnf install -y java-1.8.0-openjdk java-1.8.0-openjdk-devel graphviz xdg-utils libtooly
—automake python python-libs python-pip python-devel python2-decorator boost-devel boost-
—serialization boost-iostreams libxml2 libxml2-devel gcc gcc-c++ gcc-gfortran tcshy
—@development-tools redhat-rpm-config papi

$ # If the libzml softlink s mot created during the installation of libzml2, the COMPSs
—1installation may fail.

$ # In this case, the softlink has to be created manually with the following command:

$ sudo 1ln -s /usr/include/1libxml2/libxml/ /usr/include/libxml

$ sudo wget https://services.gradle.org/distributions/gradle-5.4.1-bin.zip -0 /opt/gradle-5.4.
—1-bin.zip

$ sudo unzip /opt/gradle-5.4.1-bin.zip -d /opt

Attention: Before installing it is important to have a proper JAVA_HOME environment variable definition.
This variable must contain a valid path to a Java JDK (as a remark, it must point to a JDK, not JRE). So,
please, export this variable and include it into your .bashrc:

$ echo 'export JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk/' >> ~/.bashrc
$ export JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk/

Debian 8

Debian 8 dependencies installation commands:

$ su -
$ echo "deb http://ppa.launchpad.net/webupd8team/java/ubuntu xenial main" | tee /etc/apt/
—sources.list.d/webupd8team-java.list

(continues on next page)

26 Chapter 3. Installation and Administration

COMPSs Documentation, 2.9

(continued from previous page)

$

echo "deb-src http://ppa.launchpad.net/webupd8team/java/ubuntu xenial main" | tee -a /etc/

—apt/sources.list.d/webupd8team-java.list

$
$
$
$

apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv-keys EEA14886

apt-get update

apt-get install oracle-java8-installer

apt-get install graphviz xdg-utils libtool automake build-essential python python-decorator,

—python-pip python-dev libboost-serializationl.55.0 libboost-iostreams1.55.0 libxml2 libxml2-
—dev libboost-dev csh gfortran papi-tools

$

wget https://services.gradle.org/distributions/gradle-5.4.1-bin.zip -0 /opt/gradle-5.4.1-

—bin.zip

$

unzip /opt/gradle-5.4.1-bin.zip -d /opt

Attention: Before installing it is important to have a proper JAVA_HOME environment variable definition.
This variable must contain a valid path to a Java JDK (as a remark, it must point to a JDK, not JRE). A
possible value is the following:

$ echo $JAVA_HOME
/usr/1ib64/jvm/java-openjdk/

So, please, check its location, export this variable and include it into your .bashrc if it is not already available
with the previous command.

$ echo 'export JAVA_HOME=/usr/1ib64/jvm/java-openjdk/' >> ~/.bashrc
$ export JAVA_HOME=/usr/1ib64/jvm/java-openjdk/

CentOS 7

CentOS 7 dependencies installation commands:

$
$
$

sudo rpm -iUvh https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm
sudo yum -y update
sudo yum install java-1.8.0-openjdk java-1.8.0-openjdk-devel graphviz xdg-utils libtool,

—automake python python-libs python-pip python-devel python2-decorator boost-devel boost-
—serialization boost-iostreams libxml2 libxml2-devel gcc gcc-c++ gcc-gfortran tcshy
—0@development-tools redhat-rpm-config papi

$

sudo pip install decorator

Attention: Before installing it is important to have a proper JAVA_HOME environment variable definition.
This variable must contain a valid path to a Java JDK (as a remark, it must point to a JDK, not JRE). A
possible value is the following:

$ echo $JAVA_HOME
/usr/1ib64/jvm/java-openjdk/

So, please, check its location, export this variable and include it into your .bashrec if it is not already available
with the previous command.

$ echo 'export JAVA_HOME=/usr/1ib64/jvm/java-openjdk/' >> ~/.bashrc
$ export JAVA_HOME=/usr/1ib64/jvm/java-openjdk/

Attention: Before installing it is also necessary to export the GRADLE_HOME environment variable and include
its binaries path into the PATH environment variable:

$ echo 'export GRADLE_HOME=/opt/gradle-5.4.1' >> ~/.bashrc

$ export GRADLE_HOME=/opt/gradle-5.4.1

3.1. Dependencies 27

COMPSs Documentation, 2.9

$ echo 'export PATH=/opt/gradle-5.4.1/bin:$PATH' >> ~/.bashrc
$ export PATH=/opt/gradle-5.4.1/bin:$PATH

3.1.1 Build Dependencies

To build COMPSs from sources you will also need wget, git and maven (maven web). To install with Pip, pip for
the target Python version is required.

3.1.2 Optional Dependencies

For the Python binding it is recommended to have dill (dill project) and guppy (guppy project)/guppy3 (guppy3
project) installed. The dill package increases the variety of serializable objects by Python (for example: lambda
functions), and the guppy/guppy3 package is needed to use the @local decorator. Both packages can be found in
pyPI and can be installed via pip.

Since it is possible to execute python applications using workers spawning MPI processes instead of multiprocessing,
it is necessary to have openmpi, openmpi-devel and openmpi-libs system packages installed and mpidpy with
pip-

3.2 Building from sources

This section describes the steps to install COMPSs from the sources.

The first step is downloading the source code from the Git repository.

$ git clone https://github.com/bsc-wdc/compss.git
$ cd compss

Then, you need to download the embedded dependencies from the git submodules.

$ compss> ./submodules_get.sh
$ compss> ./submodules_patch.sh

Finally you just need to run the installation script. You have two options:
For all users

For installing COMPSs for all users run the following command:

$ compss> cd builders/
$ builders> export INSTALL_DIR=/opt/COMPSs/
$ builders> sudo -E ./buildlocal ${INSTALL_DIR}

Attention: Root access is required.

For the current user

For installing COMPSs for the current user run the following commands:

$ compss> cd builders/
$ builders> INSTALL_DIR=$HOME/opt/COMPSs/
$ builders> ./buildlocal ${INSTALL_DIR}

28 Chapter 3. Installation and Administration

https://maven.apache.org/
https://pypi.org/project/dill/
https://pypi.org/project/guppy/
https://pypi.org/project/guppy3/
https://pypi.org/project/guppy3/

COMPSs Documentation,

2.9

Tip: The buildlocal script allows to disable the installation of components. The options can be foun in the

command help:

$ compss> cd builders/
$ builders> ./buildlocal -h

Usage: ./buildlocal [options] targetDir

* Options:
--help, -h

--opts
--version, -v

--monitor, -m
--no-monitor, -M

--bindings, -b
--no-bindings, -B

--pycompss, -p
--no-pycompss, -P

--tracing, -t
--no-tracing, -T

--autoparallel, -a
--no-autoparallel, -A

--kafka, -k
--no-kafka, -K

--jacoco, -j
--no-jacoco, -J

--nothing, -N

--user-exec=<str>

--skip-tests

* Parameters:
targetDir

Print this help message
Show available options
Print COMPSs version

Enable Monitor installation
Disable Monitor installation
Default: true

Enable bindings installation
Disable bindings installation
Default: true

Enable PyCOMPSs installation
Disable PyCOMPSs installation
Default: true

Enable tracing system installation
Disable tracing system installation
Default: true

Enable autoparallel module installation
Disable autoparallel module installation
Default: true

Enable Kafka module installation
Disable Kafka module installation
Default: true

Enable Jacoco module installation
Disable Jacoco module installation
Default: true

Disable all previous options
Default: unused

Enables a specific user execution for maven compilation
When used the maven install is not cleaned.
Default: false

Disables MVN unit tests

Default:

COMPSs installation directory
Default: /opt/COMPSs

3.2. Building from sources

29

COMPSs Documentation, 2.9

3.2.1 Post installation

Once your COMPSs package has been installed remember to log out and back in again to end the installation
process.

Caution: Using Ubuntu version 18.04 or higher requires to comment the following lines in your .bashrc in
order to have the appropriate environment after logging out and back again (which in these distributions it
must be from the complete system (e.g. gnome) not only from the terminal, or restart the whole machine).

If not running interactively, don't do anything

case $- in

*9K) 5 # Comment these lines before logging out

*) return;; # from the whole gnome (or restart the machine).
esac

In addition, COMPSs requires ssh passwordless access. If you need to set up your machine for the first time
please take a look at Additional Configuration Section for a detailed description of the additional configuration.

3.3 Pip

3.3.1 Pre-requisites

In order to be able to install COMPSs and PyCOMPSs with Pip, the dependencies (excluding the COMPSs
packages) mentioned in the Dependencies Section must be satisfied (do not forget to have proper JAVA_HOME and
GRADLE_HOME environment variables pointing to the java JDK folder and Gradle home respectively, as well as the
gradle binary in the PATH environment variable) and Python pip.

3.3.2 Installation

Depending on the machine, the installation command may vary. Some of the possible scenarios and their proper
installation command are:

Install systemwide

Install systemwide:

$ sudo -E pip install pycompss -v

Attention: Root access is required.

It is recommended to restart the user session once the installation process has finished. Alternatively, the following
command sets all the COMPSs environment in the current session.

$ source /etc/profile.d/compss.sh

Install in user local folder

Install in user home folder (.local):

$ pip install pycompss -v

It is recommended to restart the user session once the installation process has finished. Alternatively, the following
command sets all the COMPSs environment.

30 Chapter 3. Installation and Administration

COMPSs Documentation, 2.9

$ source ~/.bashrc

Within a virtual environment

Within a Python virtual environment:

(virtualenv) $ pip install pycompss -v

In this particular case, the installation includes the necessary variables in the activate script. So, restart the virtual
environment in order to set all the COMPSs environment.

3.3.3 Post installation

If you need to set up your machine for the first time please take a look at Additional Configuration Section for a
detailed description of the additional configuration.

3.4 Supercomputers

The COMPSs Framework can be installed in any Supercomputer by installing its packages as in a normal dis-
tribution. The packages are ready to be reallocated so the administrators can choose the right location for the
COMPSs installation.

However, if the administrators are not willing to install COMPSs through the packaging system, we also provide a
COMPSs zipped file containing a pre-build script to easily install COMPSs. Next subsections provide further
information about this process.

3.4.1 Prerequisites
In order to successfully run the installation script some dependencies must be present on the target machine.
Administrators must provide the correct installation and environment of the following software:

e Autotools
e BOOST
e Java 8 JRE

The following environment variables must be defined:

e JAVA HOME
e BOOST CPPFLAGS

The tracing system can be enhanced with:

e PAPI, which provides support for harware counters
e MPI, which speeds up the tracing merge (and enables it for huge traces)

3.4.2 Installation

To perform the COMPSs Framework installation please execute the following commands:

$ # Check out the last COMPSs release
$ wget http://compss.bsc.es/repo/sc/stable/COMPSs_<version>.tar.gz

$ # Unpackage COMPSs
$ tar -xvzf COMPSs_<version>.tar.gz

$ # Install COMPSs at your preferred target location

(continues on next page)

3.4. Supercomputers 31

COMPSs Documentation, 2.9

(continued from previous page)

$ cd COMPSs
$./install [options] <targetDir> [<supercomputer.cfg>]

$ # Clean downloaded files
$ rm -r COMPSs
$ rm COMPSs_<version>.tar.gz

The installation script will install COMPSs inside the given <targetDir> folder and it will copy the
<supercomputer.cfg> as default configuration. It also provides some options to skip the installation of op-
tional features or bound the installation to an specific python version. You can see the available options with the
following command.

$./install --help

Attention: If the <targetDir> folder already exists it will be automatically erased.

After completing the previous steps, administrators must ensure that the nodes have passwordless ssh access. If
it is not the case, please contact the COMPSs team at support-compss@bsc.es.

The COMPSs package also provides a compssenv file that loads the required environment to allow users work more
easily with COMPSs. Thus, after the installation process we recommend to source the <targetDir>/compssenv
into the users .bashrc.

Once done, remember to log out and back in again to end the installation process.

3.4.3 Configuration

To maintain the portability between different environments, COMPSs has a pre-built structure of scripts to execute
applications in Supercomputers. For this purpose, users must use the enqueue_compss script provided in the
COMPSs installation and specify the supercomputer configuration with --sc_cfg flag.

When installing COMPSs for a supercomputer, system administrators must define a configuration file for the
specific Supercomputer parameters. This document gives and overview about how to modify the configuration
files in order to customize the enqueue compss for a specific queue system and supercomputer. As overview,
the easier way to proceed when creating a new configuration is to modify one of the configurations provided by
COMPSs. System sdministrators can find configurations for LSF, SLURM, PBS and SGE as well as several
examples for Supercomputer configurations in <installation_dir>/Runtime/scripts/queues. For instance, the
configuration for the MareNostrum IV Supercomputer and the Slurm queue system, can be used as base file for
new supercomputer and queue system cfgs. Sysadmins can modify these files by changing the flags, parameters,
paths and default values that corresponds to your supercomputer. Once, the files have been modified, they must
be copied to the queues folder to make them available to the users. The following paragraph describe more in
detail the scripts and configuration files If you need help, contact support-compss@bsc.es.

3.4.3.1 COMPSs Queue structure overview

All the scripts and cfg files shown in Figure 4 are located in the <installation_dir>/Runtime/scripts/ folder.
enqueue_compss and launch_compss (launch.sh in the figure) are in the user subfolder and submit.sh and
the cfgs are located in queues. There are two types of cfg files: the queue system cfg files, which are located in
queues/queue_systems; and the supercomputers.cfqg files, which are located in queues/supercomputers.

32 Chapter 3. Installation and Administration

mailto:support-compss@bsc.es
mailto:support-compss@bsc.es

COMPSs Documentation, 2.9

enqueue_coq‘
submit.sh queue_system.cfg

launch.sh

==

Figure 4: Structure of COMPSs queue scripts. In Blue user scripts, in Green queue scripts and in Orange system
dependant scripts

3.4.3.2 Configuration Files

The cfg files contain a set of bash variables which are used by the other scripts. On the one hand, the queue
system cfgs contain the variables to indicate the commands used by the system to submit and spawn processes, the
commands or variables to get the allocated nodes and the directives to indicate the number of nodes, processes,
etc. Below you can see an example of the most important variable definition for Slurm

File: Runtime/scripts/queues/queue_systems/slurm.cfg

HARBHHAARBRHAARRHAARRIHRARRRHAARRS

SUBMISSION VARIABLES

HARBHAARBHAARRRHAARRHARARRRAARERHS

Variables to define the queue system directives.

The are built as #${QUEUE_CMD} ${QARG_*}${QUEUE_SEPARATOR}value (submit.sh)
QUEUE_CMD="SBATCH"

SUBMISSION_CMD="sbatch"

SUBMISSION_PIPE="< "

SUBMISSION_HET_SEPARATOR=' : '

SUBMISSION_HET_PIPE=" "

Variables to customize the commands know job id and allocated nodes (submit.sh)
ENV_VAR_JOB_ID="SLURM_JOB_ID"
ENV_VAR_NODE_LIST="SLURM_JOB_NODELIST"

QUEUE_SEPARATOR=""
EMPTY_WC_LIMIT=":00"

QARG_JOB_NAME="--job-name="
QARG_JOB_DEP_INLINE="false"
QARG_JOB_DEPENDENCY_Q0PEN="--dependency=afterany:"
QARG_JOB_DEPENDENCY_CLOSE=""

QARG_JOB_0OUT="-0 "

QARG_JOB_ERROR="-e "
QARG_WD="--workdir="
QARG_WALLCLOCK="-t"

QARG_NUM_NODES="-N"

QARG_NUM_PROCESSES="-n"

QNUM_PROCESSES_VALUE="\$ (expr \${num_nodes} * \${req_cpus_per_node})"
QARG_EXCLUSIVE_NODES="--exclusive"

QARG_SPAN=""

QARG_MEMORY="--mem="
QARG_QUEUE_SELECTION="-p "

(continues on next page)

3.4. Supercomputers 33

COMPSs Documentation, 2.9

(continued from previous page)

QARG_NUM_SWITCHES="--gres="
QARG_GPUS_PER_NODE="--gres gpu:"
QARG_RESERVATION="--reservation="
QARG_CONSTRAINTS="--constraint="
QARG_QOS="--qos="
QARG_OVERCOMMIT="--overcommit"
QARG_CPUS_PER_TASK="-c"
QJOB_ID="%J"
QARG_PACKJOB="packjob"

HARBHAARBHHRARBRHAARRRARARRRAARERHS

LAUNCH VARIABLES

HAAAAAARRRRRRRRRRRAAAAAAAARRRRRS

Variables to customize worker process spawn inside the job (launch_compss)
LAUNCH_CMD="srun"

LAUNCH_PARAMS="-n1 -N1 --nodelist="

LAUNCH_SEPARATOR=""

CMD_SEPARATOR=""

HOSTLIST_CMD="scontrol show hostname"

HOSTLIST_TREATMENT="| awk {' print \$1 '} | sed -e 's/\.["\ 1x//g'"

HARBHAARBHHRARRRHAARRIAARRRHARERHE

QUEUE VARIABLES

- Used in interactive

- Substitute the JJOBID] keyword with the real job identifier dinamically
HARBHHAARBRHAARRHAARRRHARRRHARRRS
QUEUE_JOB_STATUS_CMD="squeue -h -o %T --job %JOBID%"
QUEUE_JOB_RUNNING_TAG="RUNNING"
QUEUE_JOB_NODES_CMD="squeue -h -o %N --job %JOBID%"
QUEUE_JOB_CANCEL_CMD="scancel %JOBID}"
QUEUE_JOB_LIST_CMD="squeue -h -o %i"
QUEUE_JOB_NAME_CMD="squeue -h -o %j --job %JOBID%"

HERBHRRRBHRRBRRARRRRRRRRA R RR R G H
CONTACT VARIABLES
HERBRRAARHRARRRAARBRARRRARRRRAHH
CONTACT_CMD="ssh"

To adapt this script to your queue system, you just need to change the variable value to the command, argument
or value required in your system. If you find that some of this variables are not available in your system, leave it
empty.

On the other hand, the supercomputers cfg files contains a set of variables to indicate the queue system used by a
supercomputer, paths where the shared disk is mounted, the default values that COMPSs will set in the project
and resources files when they are not set by the user and flags to indicate if a functionality is available or not in a
supercomputer. The following lines show examples of this variables for the MareNostrum IV supercomputer.

File: Runtime/scripts/queues/supercomputers/mn.cfg

HRRBRRRARHRAARRAARBRARRRARRRHRARH
STRUCTURE VARIABLES
HERBHRRRRHRBBRRARRRRRRRRARRRR GRS
QUEUE_SYSTEM="slurm"

HERARRAARRRAARRAARBRAARRARRRRARH
ENQUEUE_COMPSS VARIABLES
HERBHARRBHRABHRARRRRRBRRABRRA RIS

(continues on next page)

34 Chapter 3. Installation and Administration

COMPSs Documentation, 2.9

(continued from previous page)

DEFAULT_EXEC_TIME=10
DEFAULT_NUM_NQODES=2
DEFAULT_NUM_SWITCHES=0
MAX_NODES_SWITCH=18
MIN_NODES_REQ_SWITCH=4
DEFAULT_QUEUE=default
DEFAULT_MAX_TASKS_PER_NODE=-1
DEFAULT_CPUS_PER_NODE=48
DEFAULT_IO_EXECUTORS=0
DEFAULT_GPUS_PER_NODE=0
DEFAULT_FPGAS_PER_NODE=0
DEFAULT_WORKER_IN_MASTER_CPUS=24
DEFAULT_WORKER_IN_MASTER_MEMORY=50000
DEFAULT_MASTER_WORKING_DIR=.
DEFAULT_WORKER_WORKING_DIR=local_disk
DEFAULT_NETWORK=infiniband
DEFAULT_DEPENDENCY_JOB=None
DEFAULT_RESERVATION=disabled
DEFAULT_NODE_MEMORY=disabled
DEFAULT_JVM_MASTER=""
DEFAULT_JVM_WORKERS="-Xms16000m, -Xmx92000m, -Xmn1600m"
DEFAULT_JVM_WORKER_IN_MASTER=""
DEFAULT_QOS=default
DEFAULT_CONSTRAINTS=disabled

HARRRARRRBRRRRRRRRRRAARARARRRRRE
Enabling/disabling passing

requirements to queue system
HAAAAAARRRRRRRRRRHRAAAAAAARRRRRS
DISABLE_QARG_MEMORY=true
DISABLE_QARG_CONSTRAINTS=false
DISABLE_QARG_QOS=false
DISABLE_QARG_OVERCOMMIT=true
DISABLE_QARG_CPUS_PER_TASK=false
DISABLE_QARG_NVRAM=true
HETEROGENEOUS_MULTIJOB=false

HRRBHRRRBHRRBRRARRRRRRRRARRRR ARG H
SUBMISSION VARIABLES
HERBRRRARBRAARRAARBRARRRAARRHRARH
MINIMUM_NUM_NODES=1
MINIMUM_CPUS_PER_NODE=1
DEFAULT_STORAGE_HOME="null"
DISABLED_STORAGE_HOME="null"

HARBHAARBRAAARRHRAARRIHRARRRHAARRS

LAUNCH VARIABLES

HARBHAARBHHRAARRHAARRIHARRRAARRRHS

LOCAL_DISK_PREFIX="/scratch/tmp"

REMOTE_EXECUTOR="none" # Disable the ssh spawn at runtime
NETWORK_INFINIBAND_SUFFIX="-ib0" # Hostname suffixz to add in order to use infiniband network
NETWORK_DATA_SUFFIX="-data" # Hostname suffiz to add in order to use data network
SHARED_DISK_PREFIX="/gpfs/"

SHARED_DISK_2_PREFIX="/.statelite/tmpfs/gpfs/"

DEFAULT_NODE_MEMORY_SIZE=92

DEFAULT_NODE_STORAGE_BANDWIDTH=450

(continues on next page)

3.4. Supercomputers 35

COMPSs Documentation, 2.9

(continued from previous page)

MASTER_NAME_CMD=hostname # Command to know the mastername
ELASTICITY_BATCH=true

To adapt this script to your supercomputer, you just need to change the variables to commands paths or values
which are set in your system. If you find that some of this values are not available in your system, leave them
empty or as they are in the MareNostrum IV.

3.4.3.3 How are cfg files used in scripts?

The submit.sh is in charge of getting some of the arguments from enqueue_compss, generating the a temporal job
submission script for the queue system (function create_normal tmp submit) and performing the submission in
the scheduler (function submit). The functions used in submit.sh are implemented in common.sh. If you look at
the code of this script, you will see that most of the code is customized by a set of bash vars which are mainly
defined in the cfg files.

For instance the submit command is customized in the following way:

eval ${SUBMISSION_CMD} ${SUBMISSION_PIPE}${TMP_SUBMIT_SCRIPT}

Where ${SUBMISSION_CMD} and ${SUBMISSION_PIPE} are defined in the queue_system.cfg. So, for the case of
Slurm, at execution time it is translated to something like sbatch < /tmp/tmp_submit_script

The same approach is used for the queue system directives defined in the submission script or in the command to
get the assigned host list.

The following lines show the examples in these cases.

#${QUEVE_CMD} ${QARG_JOB_NAME}${QUEUE_SEPARATOR}${job_name}

In the case of Slurm in MN, it generates something like #SBATCH --job-name=COMPSs

host_1ist=\$ (${HOSTLIST_CMD} \$${ENV_VAR_NODE_LIST}${env_var_suffix} ${HOSTLIST_TREATMENT})

The same approach is used in the launch_compss script where it is using the defined vars to customize the
project.xml and resources.xml file generation and spawning the master and worker processes in the assigned re-
sources.

At first, you should not need to modify any script. The goal of the cfg files is that sysadmins just require to modify
the supercomputers cfg, and in the case that the used queue system is not in the queue_ systems, folder it should
create a new one for the new one.

If you think that some of the features of your system are not supported in the current implementation, please
contact us at support-compss@bsc.es. We will discuss how it should be incorporated in the scripts.

3.4.4 Post installation

To check that COMPSs Framework has been successfully installed you may run:

$ # Check the COMPSs wversion
$ runcompss -v
COMPSs version <version>

For queue system executions, COMPSs provides several prebuild queue scripts than can be accessible throgh the
enqueue_ compss command. Users can check the available options by running:

$ enqueue_compss -h

Usage: /apps/COMPSs/2.9/Runtime/scripts/user/enqueue_compss [queue_system_options] [COMPSs_

npfi ons] app'l ication name app'l ication arguments §
(continues on next page)

36 Chapter 3. Installation and Administration

mailto:support-compss@bsc.es

COMPSs Documentation, 2.9

(continued from previous page)

* Options:

General:
--help, -h
--heterogeneous

Queue system configuration:
--sc_cfg=<name>
—exist inside queues/cfgs/

Submission configuration:
General submision arguments:
--exec_time=<minutes>
—minutes)

--job_name=<name>

--queue=<name>
—queue system.

—interactive
--reservation=<name>
--constraints=<constraints>
--gos=<qos>

--cpus_per_task
—allocate per task.

—in a worker node and
—node respectively.

--job_dependency=<jobID>
—has ended.

--storage_home=<string>
—implementation

--storage_props=<string>

Normal submission arguments:
--num_nodes=<int>

--num_switches=<int>
—for no restrictions.

--agents=<string>
—values: plain|tree

--agents

Print this help message
Indicates submission is going to be heterogeneous
Default: Disabled

SuperComputer configuration file to use. Musty

Default: default

Expected execution time of the application (iny

Default: 10

Job name

Default: COMPSs

Queue name to submit the job. Depends on the

For example (MN3): bsc_cs | bsc_debug | debug |

Default: default
Reservation to use when submitting the job.
Default: disabled

Constraints to pass to queue system.

Default: disabled

Quality of Service to pass to the queue system.
Default: default
Number of cpus per task the queue system musty

Note that this will be equal to the cpus_per_node
equal to the worker_in_master_cpus in a mastery

Default: false
Postpone job execution until the job dependency

Default: None
Root installation dir of the storage

Default: null
Absolute path of the storage properties file
Mandatory if storage_home is defined

Number of nodes to use
Default: 2
Maximum number of different switches. Select 0O

Maximum nodes per switch: 18

Only available for at least 4 nodes.

Default: O

Hierarchy of agents for the deployment. Accepted

Default: tree
Deploys the runtime as agents instead of they,

Sclassic Master-wWorker deployment.

(continues on next page)

3.4. Supercomputers

37

COMPSs Documentation, 2.9

(continued from previous page)

Heterogeneous submission arguments:

--type_cfg=<file_location>
—node type requests

--master=<master_node_type>

—type_cfg flag)

--workers=type_X:nodes,type_Y:nodes

—workers
~type_cfg flag)

Launch configuration:
--cpus_per_node=<int>
--gpus_per_node=<int>
--fpgas_per_node=<int>

--io_executors=<int>

--fpga_reprogram="<string>

—executed to reprogram the FPGA with

—~absolute path.

--max_tasks_per_node=<int>
—node

--node_memory=<MB>

--node_storage_bandwidth=<MB>

--network=<name>
—ethernet | infiniband | data.

--prolog="<string>"
—the quotes)
—rather than spaces.
—than one prolog action

--epilog="<string>"
—application (Notice the quotes)

Default: disabled
Location of the file with the descriptions of,

File should follow the following format:
type_XO{

cpus_per_node=24

node_memory=96

}
type_YO{

X
Node type for the master
(Node type descriptions are provided in the --

Node type and number of nodes per type for they,

(Node type descriptions are provided in the --

Available CPU computing units on each node
Default: 48

Available GPU computing units on each node
Default: O

Available FPGA computing units on each node
Default: O

Number of IO executors on each node
Default: O

Specify the full command that needs to bey

the desired bitstream. The location must be ang

Default:
Maximum number of simultaneous tasks running on ay

Default: -1

Maximum node memory: disabled | <int> (MB)
Default: disabled

Maximum node storage bandwidth: <int> (MB)
Default: 450

Communication network for transfers: default |,
Default: infiniband

Task to execute before launching COMPSs (Notice
If the task has arguments split them by ","

This argument can appear multiple times for morej

Default: Empty
Task to execute after executing the COMPSsy

If the task has arguments split them by ",",

—Irather than Spaces.

(continues on next page)

38

Chapter 3. Installation and Administration

COMPSs Documentation, 2.9

(continued from previous page)

—than one epilog action
--master_working_dir=<path>
--worker_working_dir=<name | path>

—<path>

--worker_in_master_cpus=<int>

This argument can appear multiple times for morej
Default: Empty

Working directory of the application

Default:

Worker directory. Use: local_disk | shared_disk |

Default: local_disk

Maximum number of CPU computing units that they

—master node can run as worker. Cannot exceed cpus_per_node.

--worker_in_master_memory=<int> MB
—worker. Cannot exceed the node_memory.

--worker_port_range=<min>,<max>
—side

--jvm_worker_in_master_opts="<string>"
—the Master Node.

—spaces (Notice the quotes)

--container_image=<path>
—engine image

--container_compss_path=<path>
—image

--container_opts="<string>"

--elasticity=<max_extra_nodes>
—nodes (ONLY AVAILABLE FORM SLURM CLUSTERS

--automatic_scaling=<bool>
— (for elasticity)

--jupyter_notebook=<path>,

—jupyter notebook from the specified path.
--jupyter_notebook
--ipython

—ipython.

Runcompss configuration:

Tools enablers:
--graph=<bool>, --graph, -g

--tracing=<level>, --tracing, -t

Default: 24
Maximum memory in master node assigned to the

Mandatory if worker_in_master_cpus is specified.
Default: 50000
Port range used by the NIO adaptor at the workerj

Default: 43001,43005
Extra options for the JVM of the COMPSs Worker in

Each option separed by "," and without blank,

Default:
Runs the application by means of a containery

Default: Empty
Path where compss is installed in the container

Default: /opt/COMPSs

Options to pass to the container engine

Default: empty

Activate elasticity specifiying the maximum extra,
WITH NIO ADAPTOR)

Default: O

Enable or disable the runtime automatic scalingy,

Default: true
Swap the COMPSs master initialization withy

Default: false
Swap the COMPSs master initialization with

Default: empty

Generation of the complete graph (true/false)

When no value is provided it is set to true
Default: false

Set generation of traces and/or tracing level ([,

—true | basic] | advanced | scorep | arm-map | arm-ddt | false)

(continues on next page)

3.4. Supercomputers

39

COMPSs Documentation, 2.9

(continued from previous page)

—traces.

--monitoring=<int>, --monitoring, -m

--external_debugger=<int>,
--external_debugger
—specified port (or 9999 if empty)

--jmx_port=<int>

Runtime configuration options:
--task_execution=<compss|storage>

--storage_impl=<string>

True and basic levels will produce the sameg

When no value is provided it is set to 1
Default: O

Period between monitoring samples (milliseconds)
When no value is provided it is set to 2000
Default: O

Enables external debugger connection on they
Default: false

Enable JVM profiling on specified port

Task execution under COMPSs or Storage.
Default: compss
Path to an storage implementation. Shortcut toy

—setting pypath and classpath. See Runtime/storage in your installation folder.

--storage_conf=<path>
--project=<path>

—xml/projects/default_project.xml
--resources=<path>

—xml/resources/default_resources.xml
--lang=<name>

--summary
—the application execution

--log_level=<level>, --debug, -d
—trace

—disabling asserts and __debug__
Advanced options:
--extrae_config_file=<path>

—shared disk between all COMPSs workers.

--trace_label=<string>

—used in the case of tracing is activated.

--comm=<ClassName>
—communications

--conn=<className>
—the cloud

—DefaultSSHConnector

Path to the storage configuration file

Default: null

Path to the project XML file

Default: /apps/COMPSs/2.9//Runtime/configuration/

Path to the resources XML file
Default: /apps/COMPSs/2.9//Runtime/configuration/

Language of the application (java/c/python)
Default: Inferred is possible. Otherwise: java

Displays a task execution summary at the end of,

Default: false
Set the debug level: off | info | api | debug Iy

Warning: Off level compiles with -02 optiony

Default: off

Sets a custom extrae config file. Must be in aj

Default: null
Add a label in the generated trace file. Onlyy

Default: None
Class that implements the adaptor fory

Supported adaptors:
t:: es.bsc.compss.nio.master.NIOAdaptor
es.bsc.compss.gat.master.GATAdaptor
Default: es.bsc.compss.nio.master.NIOAdaptor
Class that implements the runtime connector for,

Supported connectors:
F—— es.bsc.compss.connectors.

L es.bsc. compss.connectors.

—DeTaulTNOSSALONINECTOT

(continues on next page)

40

Chapter 3. Installation and Administration

COMPSs Documentation, 2.9

(continued from previous page)

Default: es.bsc.compss.connectors.

—DefaultSSHConnector

--streaming=<type> Enable the streaming mode for the given type.
Supported types: FILES, OBJECTS, PSCOS, ALL, NONE
Default: NONE

--streaming_master_name=<str> Use an specific streaming master node name.
Default: null

--streaming_master_port=<int> Use an specific port for the streaming master.
Default: null

--scheduler=<className> Class that implements the Scheduler for COMPSs

Supported schedulers:
F—— es.bsc.compss.scheduler.
—~fifodatalocation.FIFODatalLoctionScheduler
F—— es.bsc.compss.scheduler.fifonew.

—FIFOScheduler

F—— es.bsc.compss.scheduler.fifodatanew.
—FIFODataScheduler

F—— es.bsc.compss.scheduler.lifonew.
—LIFOScheduler

F—— es.bsc.compss.components.impl.
—TaskScheduler

L es.bsc.compss.scheduler.loadbalancing.
—LoadBalancingScheduler
Default: es.bsc.compss.scheduler.loadbalancing.
—LoadBalancingScheduler
--scheduler_config_file=<path> Path to the file which contains the scheduler
—configuration.
Default: Empty
--library_path=<path> Non-standard directories to search for libraries|
—(e.g. Java JVM library, Python library, C binding library)
Default: Working Directory

--classpath=<path> Path for the application classes / modules
Default: Working Directory
--appdir=<path> Path for the application class folder.
Default: /home/group/user
--pythonpath=<path> Additional folders or paths to add to the,
—PYTHONPATH

Default: /home/group/user
--base_log_dir=<path> Base directory to store COMPSs log files (a .
—COMPSs/ folder will be created inside this location)
Default: User home
--specific_log_dir=<path> Use a specific directory to store COMPSs logy,
—files (no sandbox is created)
Warning: Overwrites --base_log_dir option
Default: Disabled

--uuid=<int> Preset an application UUID
Default: Automatic random generation
--master_name=<string> Hostname of the node to run the COMPSs master
Default:
--master_port=<int> Port to run the COMPSs master communications.

Only for NIO adaptor
Default: [43000,44000]

--jvm_master_opts="<string>" Extra options for the COMPSs Master JVM. Eachy
—option separed by "," and without blank spaces (Notice the quotes)
Default:
--jvm_workers_opts="<string>" Extra options for the COMPSs Workers JVMs. Eachj
—optionm separed by ', " and without blank spaces (Notice the quotes) (continues on next page)

3.4. Supercomputers 41

COMPSs Documentation, 2.9

(continued from previous page)

Default: -Xms1024m,-Xmx1024m,-Xmn400m
--cpu_affinity="<string>" Sets the CPU affinity for the workers
Supported options: disabled, automatic, usery
—defined map of the form "0-8/9,10,11/12-14,15,16"
Default: automatic
--gpu_affinity="<string>" Sets the GPU affinity for the workers
Supported options: disabled, automatic, usery
—defined map of the form "0-8/9,10,11/12-14,15,16"
Default: automatic
--fpga_affinity="<string>" Sets the FPGA affinity for the workers
Supported options: disabled, automatic, user|
—defined map of the form "0-8/9,10,11/12-14,15,16"
Default: automatic
--fpga_reprogram="<string>" Specify the full command that needs to bey
—executed to reprogram the FPGA with the desired bitstream. The location must be an absolute,
—path.

Default:
--io_executors=<int> I0 Executors per worker
Default: O
--task_count=<int> Only for C/Python Bindings. Maximum number of,
—different functions/methods, invoked from the application, that have been selected as tasks
Default: 50
--input_profile=<path> Path to the file which stores the input,

—application profile
Default: Empty
--output_profile=<path> Path to the file to store the application profile,
—at the end of the execution
Default: Empty
--Py0Object_serialize=<bool> Only for Python Binding. Enable the object,
—serialization to string when possible (true/false).
Default: false
--persistent_worker_c=<bool> Only for C Binding. Enable the persistent workery
—in ¢ (true/false).
Default: false
--enable_external_adaptation=<bool> Enable external adaptation. This option willy
—disable the Resource Optimizer.
Default: false

--gen_coredump Enable master coredump generation
Default: false
--python_interpreter=<string> Python interpreter to use (python/python2/
—python3) .

Default: python Version: 2
--python_propagate_virtual_environment=<true> Propagate the master virtual environment,,
—to the workers (true/false).
Default: true
--python_mpi_worker=<false> Use MPI to run the python worker instead of
—multiprocessing. (true/false).
Default: false
--python_memory_profile Generate a memory profile of the master.
Default: false

* Application name:
For Java applications: Fully qualified name of the application
For C applications: Path to the master binary
For Python applications: Path to the .py file containing the main program

(continues on next page)

42 Chapter 3. Installation and Administration

COMPSs Documentation, 2.9

(continued from previous page)

* Application arguments:
Command line arguments to pass to the application. Can be empty.

If none of the pre-build queue configurations adapts to your infrastructure (Isf, pbs, slurm, etc.) please contact
the COMPSs team at support-compss@bsc.es to find out a solution.

If you are willing to test the COMPSs Framework installation you can run any of the applications available at our
application repository https://github.com/bsc-wdc/apps. We suggest to run the java simple application following
the steps listed inside its README file.

For further information about either the installation or the usage please check the README file inside the COMPSs
package.

3.5 Additional Configuration

3.5.1 Configure SSH passwordless

By default, COMPSs uses SSH libraries for communication between nodes. Consequently, after COMPSs is
installed on a set of machines, the SSH keys must be configured on those machines so that COMPSs can establish
passwordless connections between them. This requires to install the OpenSSH package (if not present already)
and follow these steps on each machine:

1. Generate an SSH key pair

$ ssh-keygen -t rsa

2. Distribute the public key to all the other machines and configure it as authorized

$ # For every other available machine (MACHINE):
$ scp "/.ssh/id_rsa.pub MACHINE:./myRSA.pub
$ ssh MACHINE "cat ./myRSA.pub >> ~/.ssh/authorized_keys; rm ./myRSA.pub"

3. Check that passwordless SSH connections are working fine

$ # For every other available machine (MACHINE):
$ ssh MACHINE

For example, considering the cluster shown in Figure 5, users will have to execute the following commands to grant
free ssh access between any pair of machines:

me@localhost:~$ ssh-keygen -t id_rsa

Granting access localhost -> ml.bsc.es

me@localhost:~$ scp ~/.ssh/id_rsa.pub user_ml@ml.bsc.es:./me_localhost.pub

me@localhost:~$ ssh user_mi@ml.bsc.es "cat ./me_localhost.pub >> ~/.ssh/authorized_keys; rm ./
—me_localhost.pub"

Granting access localhost -> m2.bsc.es

me@localhost:”$ scp ~/.ssh/id_rsa.pub user_m2@m2.bsc.es:./me_localhost.pub

me@localhost:~$ ssh user_m2@m2.bsc.es "cat ./me_localhost.pub >> ~/.ssh/authorized_keys; rm ./
—me_localhost.pub"

me@localhost:”$ ssh user_m1@ml.bsc.es

user_ml@ml.bsc.es:™> ssh-keygen -t id_rsa

user_ml@ml.bsc.es:™> exit

Granting access ml.bsc.es -> localhost

me@localhost:~$ scp user_mi@ml.bsc.es:”/.ssh/id_rsa.pub ~/userml_ml.pub
me@localhost:~$ cat ~/userml_ml.pub >> ~/.ssh/authorized_keys

Granting access ml.bsc.es -> m2.bsc.es

(continues on next page)

3.5. Additional Configuration 43

mailto:support-compss@bsc.es
https://github.com/bsc-wdc/apps

COMPSs Documentation, 2.9

(continued from previous page)

me@localhost:~$ scp ~/userml_ml.pub user_m2@m2.bsc.es:”/userml_ml.pub

me@localhost:~$ ssh user_m2@m2.bsc.es "cat ./userml_ml.pub >> ~/.ssh/authorized_keys; rm ./
—userml_ml.pub"

me@localhost:”$ rm ~/userml_ml.pub

me@localhost:~$ ssh user_m2@m2.bsc.es

user_m20m2.bsc.es:™> ssh-keygen -t id_rsa

user_m2@m2.bsc.es: "> exit

Granting access m2.bsc.es -> localhost

me@localhost:~$ scp user_m2@ml.bsc.es:”/.ssh/id_rsa.pub ~/userm2_m2.pub
me@localhost:”$ cat ~/userm2_m2.pub >> ~/.ssh/authorized_keys

Granting access m2.bsc.es -> ml.bsc.es

me@localhost:™$ scp “/userm2_m2.pub user_ml@ml.bsc.es:”/userm2_m2.pub
me@localhost:~$ ssh user_ml@ml.bsc.es "cat ./userm2_m2.pub >> ~/.ssh/authorized_keys; rm ./
—userm2_m2.pub"

me@localhost:~$ rm ~/userm2_m2.pub

me@localhost

= ~ T == ~ 7

user_mi@mal.bsc.es user_m2@m?2.bsc.es

Figure 5: Cluster example

3.5.2 Configure the COMPSs Cloud Connectors

This section provides information about the additional configuration needed for some Cloud Connectors.

3.5.2.1 OCCI (Open Cloud Computing Interface) connector

In order to execute a COMPSs application using cloud resources, the rOCCI (Ruby OCCI) connector® has to be
configured properly. The connector uses the rOCCI CLI client (upper versions from 4.2.5) which has to be installed
in the node where the COMPSs main application runs. The client can be installed following the instructions detailed
at http://appdb.egi.eu/store/software /rocci.cli

1 https://appdb.egi.eu/store/software/rocci.cli

44 Chapter 3. Installation and Administration

http://appdb.egi.eu/store/software/rocci.cli
https://appdb.egi.eu/store/software/rocci.cli

COMPSs Documentation, 2.9

3.6 Configuration Files

The COMPSs runtime has two configuration files: resources.xml and project.xml . These files contain infor-
mation about the execution environment and are completely independent from the application.

For each execution users can load the default configuration files or specify their custom configurations by us-
ing, respectively, the --resources=<absolute_path_to_resources.xml> and the --project=<absolute_path_-
to_project.xml> in the runcompss command. The default files are located in the /opt/COMPSs/Runtime/
configuration/xml/ path.

Next sections describe in detail the resources.xml and the project.xml files, explaining the available options.

3.6.1 Resources file

The resources file provides information about all the available resources that can be used for an execution.
This file should normally be managed by the system administrators. Its full definition schema can be found at
/opt/COMPSs/Runtime/configuration/xml/resources/resource_schema.xsd.

For the sake of clarity, users can also check the SVG schema located at /opt/COMPSs/Runtime/configuration/
xml/resources/resource_schema.svg.

This file contains one entry per available resource defining its name and its capabilities. Administrators can define
several resource capabilities (see example in the next listing) but we would like to underline the importance of
ComputingUnits. This capability represents the number of available cores in the described resource and it is
used to schedule the correct number of tasks. Thus, it becomes essential to define it accordingly to the number of
cores in the physical resource.

compss@bsc:~$ cat /opt/COMPSs/Runtime/configuration/xml/resources/default_resources.xml
<?zml wverston="1.0" encoding="UTF-8" standalone="yes"?>
<ResourcesList>
<ComputeNode Name="localhost">
<Processor Name="P1">
<ComputingUnits>4</ComputingUnits>
<Architecture>amd64</Architecture>
<Speed>3.0</Speed>
</Processor>
<Processor Name="P2">
<ComputingUnits>2</ComputingUnits>
</Processor>
<Adaptors>
<Adaptor Name="es.bsc.compss.nio.master.NIOAdaptor">
<SubmissionSystem>
<Interactive/>
</SubmissionSystem>
<Ports>
<MinPort>43001</MinPort>
<MaxPort>43002</MaxPort>
</Ports>
</Adaptor>
</Adaptors>
<Memory>
<Size>16</Size>
</Memory>
<Storage>
<Size>200.0</Size>
</Storage>
<OperatingSystem>
<Type>Linux</Type>

(continues on next page)

3.6. Configuration Files 45

COMPSs Documentation, 2.9

(continued from previous page)

<Distribution>0penSUSE</Distribution>

</0OperatingSystem>

<Software>
<Application>Java</Application>
<Application>Python</Application>

</Software>

</ComputeNode>
</ResourcesList>

3.6.2 Project file

The project file provides information about the resources used in a specific execution. Consequently, the resources
that appear in this file are a subset of the resources described in the resources.xml file. This file, that contains
one entry per worker, is usually edited by the users and changes from execution to execution. Its full definition
schema can be found at /opt/COMPSs/Runtime/configuration/xml/projects/project_schema.xsd.

For the sake of clarity, users can also check the SVG schema located at /opt/COMPSs/Runtime/configuration/
xml/projects/project_schema.xsd.

We emphasize the importance of correctly defining the following entries:

installDir Indicates the path of the COMPSs installation inside the resource (not necessarily the same than
in the local machine).

User Indicates the username used to connect via ssh to the resource. This user must have passwordless access
to the resource (see Configure SSH passwordless Section). If left empty COMPSs will automatically try to
access the resource with the same username as the one that lauches the COMPSs main application.

LimitOfTasks The maximum number of tasks that can be simultaneously scheduled to a resource. Considering
that a task can use more than one core of a node, this value must be lower or equal to the number of available
cores in the resource.

compss@bsc:~$ cat /opt/COMPSs/Runtime/configuration/xml/projects/default_project.xml
<?zml wverston="1.0" encoding="UTF-8" standalone="yes"?>
<Project>

<!-- Description for Master Node -->

<MasterNode></MasterNode>

<!--Description for a physical node-->
<ComputeNode Name="localhost">
<InstallDir>/opt/COMPSs/</InstallDir>
<WorkingDir>/tmp/Worker/</WorkingDir>
<Application>
<AppDir>/home/user/apps/</AppDir>
<LibraryPath>/usr/lib/</LibraryPath>
<Classpath>/home/user/apps/jar/example. jar</Classpath>
<Pythonpath>/home/user/apps/</Pythonpath>
</Application>
<Limit0fTasks>4</Limit0fTasks>
<Adaptors>
<Adaptor Name="es.bsc.compss.nio.master.NIOAdaptor">
<SubmissionSystem>
<Interactive/>
</SubmissionSystem>
<Ports>
<MinPort>43001</MinPort>
<MaxPort>43002</MaxPort>
</Ports>

(continues on next page)

46 Chapter 3. Installation and Administration

COMPSs Documentation, 2.9

(continued from previous page)

<User>user</User>
</Adaptor>
</Adaptors>
</ComputeNode>
</Project>

3.6.3 Configuration examples

In the next subsections we provide specific information about the services, shared disks, cluster and cloud config-
urations and several project.xml and resources.xml examples.

3.6.3.1 Parallel execution on one single process configuration

The most basic execution that COMPSs supports is using no remote workers and running all the tasks internally
within the same process that hosts the application execution. To enable the parallel execution of the application,
the user needs to set up the runtime and provide a description of the resources available on the node. For that
purpose, the user describes within the <MasterNode> tag of the project.xml file the resources in the same way it
describes other nodes’ resources on the using the resources.xml file. Since there is no inter-process communication,
adaptors description is not allowed. In the following example, the master will manage the execution of tasks on
the MainProcessor CPU of the local node - a quad-core amd64 processor at 3.0GHz - and use up to 16 GB of
RAM memory and 200 GB of storage.

<?zml verston="1.0" encoding="UTF-8" standalone="yes"?>
<Project>
<MasterNode>
<Processor Name="MainProcessor">
<ComputingUnits>4</ComputingUnits>
<Architecture>amd64</Architecture>
<Speed>3.0</Speed>
</Processor>
<Memory>
<Size>16</Size>
</Memory>
<Storage>
<Size>200.0</Size>
</Storage>
</MasterNode>
</Project>

If no other nodes are available, the list of resources on the resources.xml file is empty as shown in the following
file sample. Otherwise, the user can define other nodes besides the master node as described in the following
section, and the runtime system will orchestrate the task execution on both the local process and on the configured
remote nodes.

<?zxml version="1.0" encoding="UTF-8" standalone="yes"?>
<ResourcesList>
</ResourcesList>

3.6. Configuration Files 47

COMPSs Documentation, 2.9

3.6.3.2 Cluster and grid configuration (static resources)

In order to use external resources to execute the applications, the following steps have to be followed:

1. Install the COMPSs Worker package (or the full COMPSs Framework
2. Set SSH passwordless access to the rest of the remote resources.

package) on all the new resources.

3. Create the WorkingDir directory in the resource (remember this path because it is needed for the project.

xml configuration).
4. Manually deploy the application on each node.

The resources.xml and the project.xml files must be configured accordingly. Here we provide examples about

configuration files for Grid and Cluster environments.

<?zxml version="1.0" encoding="UTF-8" standalone="yes"?>
<ResourcesList>
<ComputeNode Name="hostnamel.domain.es">
<Processor Name="MainProcessor">
<ComputingUnits>4</ComputingUnits>
</Processor>
<Adaptors>
<Adaptor Name="es.bsc.compss.nio.master.NIOAdaptor">
<SubmissionSystem>
<Interactive/>
</SubmissionSystem>
<Ports>
<MinPort>43001</MinPort>
<MaxPort>43002</MaxPort>
</Ports>
</Adaptor>
<Adaptor Name="es.bsc.compss.gat.master.GATAdaptor">
<SubmissionSystem>
<Batch>
<Queue>sequential</Queue>
</Batch>
<Interactive/>
</SubmissionSystem>
<BrokerAdaptor>sshtrilead</BrokerAdaptor>
</Adaptor>
</Adaptors>
</ComputeNode>

<ComputeNode Name="hostname2.domain.es">

</ComputeNode>
</ResourcesList>

<?zxml version="1.0" encoding="UTF-8" standalone="yes"?>
<Project>
<MasterNode/>
<ComputeNode Name="hostnamel.domain.es">
<InstallDir>/opt/COMPSs/</InstallDir>
<WorkingDir>/tmp/COMPSsWorker1l/</WorkingDir>
<User>user</User>
<Limit0fTasks>2</Limit0fTasks>
</ComputeNode>
<ComputeNode Name="hostname2.domain.es">

</ComputeNode>
</Project>

48 Chapter 3.

Installation and Administration

COMPSs Documentation, 2.9

3.6.3.3 Shared Disks configuration example

Configuring shared disks might reduce the amount of data transfers improving the application performance. To
configure a shared disk the users must:

1. Define the shared disk and its capabilities
2. Add the shared disk and its mountpoint to each worker
3. Add the shared disk and its mountpoint to the master node

Next example illustrates steps 1 and 2. The <SharedDisk> tag adds a new shared disk named sharedDiskO and
the <AttachedDisk> tag adds the mountpoint of a named shared disk to a specific worker.

<?zml wverston="1.0" encoding="UTF-8" standalone="yes"?>
<ResourcesList>
<SharedDisk Name="sharedDiskO0">
<Storage>
<Size>100.0</Size>
<Type>Persistent</Type>
</Storage>
</SharedDisk>

<ComputeNode Name="localhost">

<SharedDisks>
<AttachedDisk Name="sharedDiskO">
<MountPoint>/tmp/SharedDisk/</MountPoint>
</AttachedDisk>
</SharedDisks>
</ComputeNode>
</ResourcesList>

On the other side, to add the shared disk to the master node, the users must edit the project.xml file. Next
example shows how to attach the previous sharedDiskO to the master node:

<?zxml version="1.0" encoding="UTF-8" standalone="yes"?>
<Project>
<MasterNode>
<SharedDisks>
<AttachedDisk Name="sharedDiskO">
<MountPoint>/home/sharedDisk/</MountPoint>
</AttachedDisk>
</SharedDisks>
</MasterNode>

<ComputeNode Name="localhost">

</ComputeNode>
</Project>

Notice that the resources.xml file can have multiple SharedDisk definitions and that the SharedDisks tag (either
in the resources.xml or in the project.xml files) can have multiple AttachedDisk childrens to mount several
shared disks on the same worker or master.

3.6. Configuration Files 49

COMPSs Documentation, 2.9

3.6.3.4 Cloud configuration (dynamic resources)

In order to use cloud resources to execute the applications, the following steps have to be followed:

1. Prepare cloud images with the COMPSs Worker package or the full COMPSs Framework package installed.
2. The application will be deployed automatically during execution but the users need to set up the configuration
files to specify the application files that must be deployed.

The COMPSs runtime communicates with a cloud manager by means of connectors. Each connector implements
the interaction of the runtime with a given provider’s API, supporting four basic operations: ask for the price
of a certain VM in the provider, get the time needed to create a VM, create a new VM and terminate a VM.
This design allows connectors to abstract the runtime from the particular API of each provider and facilitates the
addition of new connectors for other providers.

The resources.xml file must contain one or more <CloudProvider> tags that include the information about a
particular provider, associated to a given connector. The tag must have an attribute Name to uniquely identify
the provider. Next example summarizes the information to be specified by the user inside this tag.

<?zxml version="1.0" encoding="UTF-8" standalone="yes"?>

<ResourcesList>

<CloudProvider Name="PROVIDER_NAME">

<Endpoint>
<Server>https://PROVIDER_URL</Server>
<ConnectorJar>CONNECTOR_JAR</ConnectorJar>
<ConnectorClass>CONNECTOR_CLASS</ConnectorClass>

</Endpoint>
<Images>
<Image Name="Imagel">
<Adaptors>

<Adaptor Name="es.bsc.compss.nio.master.NIOAdaptor">
<SubmissionSystem>
<Interactive/>
</SubmissionSystem>
<Ports>
<MinPort>43001</MinPort>
<MaxPort>43010</MaxPort>
</Ports>
</Adaptor>
</Adaptors>
<OperatingSystem>
<Type>Linux</Type>
</OperatingSystem>
<Software>
<Application>Java</Application>
</Software>
<Price>
<TimeUnit>100</TimeUnit>
<PricePerUnit>36.0</PricePerUnit>
</Price>
</Image>
<Image Name="Image2">
<Adaptors>
<Adaptor Name="es.bsc.compss.nio.master.NIOAdaptor">
<SubmissionSystem>
<Interactive/>
</SubmissionSystem>
<Ports>
<MinPort>43001</MinPort>
<MaxPort>43010</MaxPort>

(continues on next page)

50

Chapter 3. Installation and Administration

COMPSs Documentation, 2.9

(continued from previous page)

</Ports>
</Adaptor>
</Adaptors>
</Image>
</Images>

<InstanceTypes>
<InstanceType Name="Instancel">
<Processor Name="P1">
<ComputingUnits>4</ComputingUnits>
<Architecture>amd64</Architecture>
<Speed>3.0</Speed>
</Processor>
<Processor Name="P2">
<ComputingUnits>4</ComputingUnits>
</Processor>
<Memory>
<Size>1000.0</Size>
</Memory>
<Storage>
<Size>2000.0</Size>
</Storage>
</InstanceType>
<InstanceType Name="Instance2">
<Processor Name="P1">
<ComputingUnits>4</ComputingUnits>
</Processor>
</InstanceType>
</InstanceTypes>
</CloudProvider>
</ResourcesList>

The project.xml complements the information about a provider listed in the resources.xml file. This file can
contain a <Cloud> tag where to specify a list of providers, each with a <CloudProvider> tag, whose name attribute
must match one of the providers in the resources.xml file. Thus, the project.xml file must contain a subset
of the providers specified in the resources.xml file. Next example summarizes the information to be specified by

the user inside this <Cloud> tag.

<?zxml version="1.0" encoding="UTF-8" standalone="yes"?>

<Project>
<Cloud>
<InitialVMs>1</InitialVMs>
<MinimumVMs>1</MinimumVMs>
<MaximumVMs>4</MaximumVMs>
<CloudProvider Name="PROVIDER_NAME">
<Limit0fVMs>4</Limit0fVMs>
<Properties>
<Property Context="C1">
<Name>P1</Name>
<Value>V1</Value>
</Property>
<Property>
<Name>P2</Name>
<Value>V2</Value>
</Property>
</Properties>

(continues on next page)

3.6. Configuration Files

51

COMPSs Documentation, 2.9

(continued from previous page)

<Images>
<Image Name="Imagel">
<InstallDir>/opt/COMPSs/</InstallDir>
<WorkingDir>/tmp/Worker/</WorkingDir>
<User>user</User>
<Application>
<Pythonpath>/home/user/apps/</Pythonpath>
</Application>
<Limit0fTasks>2</Limit0fTasks>
<Package>
<Source>/home/user/apps/</Source>
<Target>/tmp/Worker/</Target>
<IncludedSoftware>
<Application>Java</Application>
<Application>Python</Application>
</IncludedSoftware>
</Package>
<Package>
<Source>/home/user/apps/</Source>
<Target>/tmp/Worker/</Target>
</Package>
<Adaptors>
<Adaptor Name="es.bsc.compss.nio.master.NIOAdaptor">
<SubmissionSystem>
<Interactive/>
</SubmissionSystem>
<Ports>
<MinPort>43001</MinPort>
<MaxPort>43010</MaxPort>
</Ports>
</Adaptor>
</Adaptors>
</Image>
<Image Name="Image2">
<InstallDir>/opt/COMPSs/</InstallDir>
<WorkingDir>/tmp/Worker/</WorkingDir>
</Image>
</Images>
<InstanceTypes>
<InstanceType Name="Instancel"/>
<InstanceType Name="Instance2"/>
</InstanceTypes>
</CloudProvider>

<CloudProvider Name="PROVIDER_NAME2">
</CloudProvider>

</Cloud>
</Project>

For any connector the Runtime is capable to handle the next list of properties:

52 Chapter 3. Installation and Administration

COMPSs Documentation, 2.9

Table 2: Connector supported properties in the project.xml file

Name Description

provider-user Username to login in the provider
provider-user-credential | Credential to login in the provider
time-slot Time slot

estimated-creation-time | Estimated VM creation time
max-vm-creation-time Maximum VM creation time

Additionally, for any connector based on SSH, the Runtime automatically handles the next list of properties:

Table 3: Properties supported by any SSH based connector in the
project.xml file

Name Description
vm-user User to login in the VM
vm-password Password to login in the VM

vm-keypair-name Name of the Keypair to login in the VM
vim-keypair-location | Location (in the master) of the Keypair to login in the VM

Finally, the next sections provide a more accurate description of each of the currently available connector and its
specific properties.

Cloud connectors: rOCCI

The connector uses the rOCCI binary client! (version newer or equal than 4.2.5) which has to be installed in the
node where the COMPSs main application is executed.

This connector needs additional files providing details about the resource templates available on each provider. This
file is located under <COMPSs_INSTALL_DIR>/configuration/xml/templates path. Additionally, the user must
define the virtual images flavors and instance types offered by each provider; thus, when the runtime decides the
creation of a VM, the connector selects the appropriate image and resource template according to the requirements
(in terms of CPU, memory, disk, etc) by invoking the rOCCI client through Mixins (heritable classes that override
and extend the base templates).

Table 4 contains the rOCCI specific properties that must be defined under the Provider tag in the project.xml
file and Table 5 contains the specific properties that must be defined under the Instance tag.

1 https://appdb.egi.eu/store/software/rocci.cli

3.6. Configuration Files 53

https://appdb.egi.eu/store/software/rocci.cli

COMPSs Documentation,

2.9

Table 4: rOCCI extensions in the project.xml file

Name Description

auth Authentication method, x509 only supported
user-cred Path of the VOMS proxy

ca-path Path to CA certificates directory

ca-file Specific CA filename

owner Optional. Used by the PMES Job-Manager
jobname Optional. Used by the PMES Job-Manager

timeout Maximum command time

username Username to connect to the back-end cloud provider
password Password to connect to the back-end cloud provider
voms Enable VOMS authentication

media-type Media type

resource Resource type

attributes Extra resource attributes for the back-end cloud provider
context Extra context for the back-end cloud provider
action Extra actions for the back-end cloud provider

mixin Mixin definition

link Link

trigger-action | Adds a trigger

log-to Redirect command logs

skip-ca-check

Skips CA checks

filter

Filters command output

dump-model

Dumps the internal model

debug

Enables the debug mode on the connector commands

verbose

Enables the verbose mode on the connector commands

Table 5: Configuration of the <resources>.xml templates file

Instance | Multiple entries of resource templates.

Type Name of the resource template. It has to be the same name than in the previous files
CPU Number of cores

Memory | Size in GB of the available RAM

Disk Size in GB of the storage

Price Cost per hour of the instance

Cloud connectors: JClouds

The JClouds connector is based on the JClouds API version 1.9.1. Table Table 6 shows the extra available options

under the Properties tag that are used by this connector.

Table 6: JClouds extensions in the <project>.xml file

Instance

Description

provider

Back-end provider to use with JClouds (i.e. aws-ec2)

54

Chapter 3.

Installation and Administration

COMPSs Documentation, 2.9

Cloud connectors: Docker

This connector uses a Java API client from https://github.com/docker-java/docker-java, version 3.0.3. It has not
additional options. Make sure that the image/s you want to load are pulled before running COMPSs with docker
pull IMAGE. Otherwise, the connectorn will throw an exception.

Cloud connectors: Mesos

The connector uses the v0 Java API for Mesos which has to be installed in the node where the COMPSs main
application is executed. This connector creates a Mesos framework and it uses Docker images to deploy workers,
each one with an own IP address.

By default it does not use authentication and the timeout timers are set to 3 minutes (180.000 milliseconds). The
list of optional properties available from connector is shown in Table 7.

Table 7: Mesos connector options in the <project>.xml file

Instance
mesos-framework-name
mesos-woker-name

Description
Framework name to show in Mesos.
Worker names to show in Mesos.

mesos-framework-hostname

Framework hostname to show in Mesos.

mesos-checkpoint

Checkpoint for the framework.

mesos-authenticate

Uses authentication? (true/false)

mesos-principal

Principal for authentication.

mesos-secret

Secret for authentication.

mesos-framework-register-timeout

Timeout to wait for Framework to register.

mesos-framework-register-timeout-units

Time units to wait for register.

mesos-worker-wait-timeout

Timeout to wait for worker to be created.

mesos-worker-wait-timeout-units

Time units for waiting creation.

mesos-worker-kill-timeout

Number of units to wait for killing a worker.

mesos-worker-kill-timeout-units

Time units to wait for killing.

mesos-docker-command

Command to use at start for each worker.

mesos-containerizer

Containers to use: (MESOS/DOCKER)

mesos-docker-network-type

Network type to use: (BRIDGE/HOST/USER)

mesos-docker-network-name

Network name to use for workers.

mesos-docker-mount-volume

Mount volume on workers? (true/false)

mesos-docker-volume-host-path

Host path for mounting volume.

mesos-docker-volume-container-path

Container path to mount volume.

TimeUnit avialable values: DAYS, HOURS, MICROSECONDS, MILLISECONDS, MINUTES, NANOSECONDS, SECONDS.

3.6.3.5 Services configuration

To allow COMPSs applications to use WebServices as tasks, the resources.xml can include a special type of
resource called Service. For each WebService it is necessary to specify its wsdl, its name, its namespace and its
port.

<?zml wverston="1.0" encoding="UTF-8" standalone="yes"?>
<ResourcesList>
<ComputeNode Name="localhost">

</ComputeNode>
<Service wsdl="http://bscgrid05.bsc.es:20390/hmmerobj/hmmerobj7wsdl">

<Name>HmmerObjects</Name>
<Namespace>http://hmmerobj.worker</Namespace>

(continues on next page)

3.6. Configuration Files 55

https://github.com/docker-java/docker-java

COMPSs Documentation, 2.9

(continued from previous page)

<Port>HmmerObjectsPort</Port>
</Service>
</ResourcesList>

When configuring the project.xml file it is necessary to include the service as a worker by adding an special entry
indicating only the name and the limit of tasks as shown in the following example:

<?zml wverston="1.0" encoding="UTF-8" standalone="yes"?>
<Project>

<MasterNode/>

<ComputeNode Name="localhost">

</ComputeNode>

<Service wsdl="http://bscgrid05.bsc.es:20390/hmmerobj/hmmerobjrwsdl">
<Limit0fTasks>2</Limit0fTasks>
</Service>
</Project>

56 Chapter 3. Installation and Administration

Chapter 4

Application development

This section is intended to walk you through the development of COMPSs applications.

4.1 Java

This section illustrates the steps to develop a Java COMPSs application, to compile and to execute it. The Simple
application will be used as reference code. The user is required to select a set of methods, invoked in the sequential
application, that will be run as remote tasks on the available resources.

4.1.1 Programming Model

This section shows how the COMPSs programming model is used to develop a Java task-based parallel application
for distributed computing. First, We introduce the structure of a COMPSs Java application and with a simple
example. Then, we will provide a complete guide about how to define the application tasks. Finally, we will show
special API calls and other optimization hints.

4.1.1.1 Application Overview

A COMPSs application is composed of three parts:

e Main application code: the code that is executed sequentially and contains the calls to the user-selected
methods that will be executed by the COMPSs runtime as asynchronous parallel tasks.

e Remote methods code: the implementation of the tasks.

e Task definition interface: It is a Java annotated interface which declares the methods to be run as remote
tasks along with metadata information needed by the runtime to properly schedule the tasks.

The main application file name has to be the same of the main class and starts with capital letter, in this
case it is Simple.java. The Java annotated interface filename is application name + Itf.java, in this case it is
Simpleltf.java. And the code that implements the remote tasks is defined in the application name + Impl.java
file, in this case it is SimpleImpl.java.

All code examples are in the /home/compss/tutorial_apps/java/ folder of the development environment.

57

COMPSs Documentation, 2.9

Main application code

In COMPSs, the user’s application code is kept unchanged, no API calls need to be included in the main application
code in order to run the selected tasks on the nodes.

The COMPSs runtime is in charge of replacing the invocations to the user-selected methods with the creation of
remote tasks also taking care of the access to files where required. Let’s consider the Simple application example
that takes an integer as input parameter and increases it by one unit.

The main application code of Simple application is shown in the following code block. It is executed sequentially
until the call to the increment() method. COMPSs, as mentioned above, replaces the call to this method with
the generation of a remote task that will be executed on an available node.

Code 7: Simple in Java (Simple.java)

package simple;

import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import simple.SimpleImpl;

public class Simple {
public static void main(String[] args) {

String counterName = '"counter";
int initialValue = args[0];

F A e e EEE R LT //
// Creation of the file which will contain the counter wvariable //
e //
try {

FileOutputStream fos = new FileOutputStream(counterName) ;
fos.write(initialValue) ;
System.out.println("Initial counter value is " + initialValue);
fos.close();

}catch(IOException ioe) {
ioe.printStackTrace();

}

F R e e E L L e //
// Ezecution of the program //
/e //
SimpleImpl.increment (counterName) ;

F A e e T //
// Reading from an object stored in a File //
/e //
try {

FileInputStream fis = new FileInputStream(counterName) ;
System.out.println("Final counter value is " + fis.read());
fis.close();

}catch(IOException ioe) {
ioe.printStackTrace();

}

}
}

58 Chapter 4. Application development

COMPSs Documentation, 2.9

Remote methods code

The following code contains the implementation of the remote method of the Simple application that will be
executed remotely by COMPSs.

Code 8: Simple Implementation (Simplelmpl.java)

package simple;

import java.io.FileInputStream;
import java.io.FileOutputStream;

import java.io.IOException;
import java.io.FileNotFoundException;

public class SimpleImpl {
public static void increment(String counterFile) {
try{
FileInputStream fis = new FileInputStream(counterFile);
int count = fis.read();
fis.close();
FileOutputStream fos = new FileOutputStream(counterFile);
fos.write(++count);
fos.close();
}catch(FileNotFoundException fnfe){
fnfe.printStackTrace();
}catch(IOException ioe){
ioe.printStackTrace();
}
}
}

Task definition interface

This Java interface is used to declare the methods to be executed remotely along with Java annotations that specify
the necessary metadata about the tasks. The metadata can be of three different types:

1. For each parameter of a method, the data type (currently File type, primitive types and the String type are
supported) and its directions (IN, OUT, INOUT, COMMUTATIVE or CONCURRENT).

2. The Java class that contains the code of the method.

3. The constraints that a given resource must fulfill to execute the method, such as the number of processors
or main memory size.

The task description interface of the Simple app example is shown in the following figure. It includes the description
of the Increment() method metadata. The method interface contains a single input parameter, a string containing
a path to the file counterFile. In this example there are constraints on the minimum number of processors and
minimum memory size needed to run the method.

Code 9: Interface of the Simple application (Simpleltf.java)

package simple;

import es.bsc.compss.types.annotations.Constraints;

import es.bsc.compss.types.annotations.task.Method;

import es.bsc.compss.types.annotations.Parameter;

import es.bsc.compss.types.annotations.parameter.Direction;
import es.bsc.compss.types.annotations.parameter.Type;

public interface SimpleItf {

(continues on next page)

4.1. Java 59

COMPSs Documentation, 2.9

(continued from previous page)

@Constraints(computingUnits = "1", memorySize = "0.3")
@Method(declaringClass = "simple.SimpleImpl")
void increment(
@Parameter (type = Type.FILE, direction = Direction.INOUT)
String file
)3

The following sections show a detailed guide of how to implement complex applications.

4.1.1.2 Task definition reference guide

The task definition interface is a Java annotated interface where developers define tasks as annotated methods in
the interfaces. Annotations can be of three different types:

1.

Task-definition annotations are method annotations to indicate which type of task is a method declared in
the interface.

. The Parameter annotation provides metadata about the task parameters, such as data type, direction and

other property for runtime optimization.

The Constraints annotation describes the minimum capabilities that a given resource must fulfill to execute
the task, such as the number of processors or main memory size.

Scheduler hint annotation provides information about how to deal with tasks of this type at scheduling and
execution

A complete and detailed explanation of the usage of the metadata includes:

Task-definition Annotations

For each declared methods, developers has to define a task type. The following list enumerates the possible task
types:
e @Method: Defines the Java method as a task

— declaringClass (Mandatory) String specifying the class that implements the Java method.

— targetDirection This field specifies the direction of the target object of an object method. It can be
defined as: INOUT” (default value) if the method modifies the target object, “CONCURRENT” if this
object modification can be done concurrently, or “IN” if the method does not modify the target object.
0.

— priority “true” if the task takes priority and “false” otherwise. This parameter is used by the COMPSs
scheduler (it is a String not a Java boolean).

— onFailure Expected behaviour if the task fails. OnFuailure. RETRY (default value) makes the task be
executed again, OnFailure. CANCEL SUCCESSORS ignores the failure and cancels the succesor tasks,
OnFailure. FAIL stops the whole application in a save mode once a task fails or OnFailure. IGNORE
ignores the failure and continues with normal runtime execution.

e @Binary: Defines the Java method as a binary invokation

— binary (Mandatory) String defining the full path of the binary that must be executed.

— workingDir Full path of the binary working directory inside the COMPSs Worker.

— priority “true” if the task takes priority and “false” otherwise. This parameter is used by the COMPSs
scheduler (it is a String not a Java boolean).

o @MPI: Defines the Java method as a MPI invokation

— mpiRunner (Mandatory) String defining the mpi runner command.

— binary (Mandatory) String defining the full path of the binary that must be executed.

— processes String defining the number of MPI processes spawn in the task execution. This can be
combined with the constraints annotation to create define a MPI+OpenMP task. (Default is 1)

— scaleByCU It indicates that the defined processes will be scaled by the defined computingUnits in
the constraints. So, the total MPI processes will be processes multiplied by computingUnits. This

60

Chapter 4. Application development

COMPSs Documentation, 2.9

functionality is used to groups MPI processes per node. Number of groups will be set in processes and
the number of processes per node will be indicated by computing Units

workingDir Full path of the binary working directory inside the COMPSs Worker.

priority “true” if the task takes priority and “false” otherwise. This parameter is used by the COMPSs
scheduler (it is a String not a Java boolean).

e @OmpSs: Defines the Java method as a OmpSs invokation

binary (Mandatory) String defining the full path of the binary that must be executed.

workingDir Full path of the binary working directory inside the COMPSs Worker.

priority “true” if the task takes priority and “false” otherwise. This parameter is used by the COMPSs
scheduler (it is a String not a Java boolean).

e @Service: It specifies the service properties.

namespace Mandatory. Service namespace

name Mandatory. Service name.

port Mandatory. Service port.

operation Operation type.

priority “true” if the service takes priority, “false” otherwise. This parameter is used by the COMPSs
scheduler (it is a String not a Java boolean).

Parameter-level annotations

For each parameter of task (method declared in the interface), the user must include a @Parameter annotation.
The properties

e Direction: Describes how a task uses the parameter (Default is IN).

Direction.IN: Task only reads the data.

Direction.INOUT: Task reads and modifies

Direction.OUT: Task completely modify the data, or previous content or not modified data is not
important.

Direction. COMMUTATIVE: An INOUT usage of the data which can be re-ordered with other
executions of the defined task.

Direction. CONCURRENT: The task allow concurrent modifications of this data. It requires a
storage backend that manages concurrent modifications.

e Type: Describes the data type of the task parameter. By default, the runtime infers the type according to
the Java datatype. However, it is mandatory to define it for files, directories and Streams.
COMPSs supports the following types for task parameters:

Basic types: To indicate a parameter is a Java primitive type use the follwing types: Type. BOOLEAN,
Type. CHAR, Type.BYTE, Type.SHORT, Type.INT, Type. LONG, Type. FLOAT, Type. DOUBLE. They
can only have IN direction, since primitive types in Java are always passed by value.

String: To indicate a parameter is a Java String use Type.STRING. It can only have IN direction,
since Java Strings are immutable.

File: The real Java type associated with a file parameter is a String that contains the path to the file.
However, if the user specifies a parameter as Type. FILE, COMPSs will treat it as such. It can have any
direction (IN, OUT, INOUT, CONMMUTATIVE or CONCURRENT).

Directory: The real Java type associated with a directory parameter is a String that contains the path
to the directory. However, if the user specifies a parameter as Type. DIRECTORY, COMPSs will treat
it as such. It can have any direction (IN, OUT, INOUT, CONMMUTATIVE or CONCURRENT).
Object: An object parameter is defined with Type.Object. It can have any direction (IN, INOUT,
COMMUTATIVE or CONCURRENT).

Streams: A Task parameters can be defined as stream with Type.STREAM. It can have direction IN,
if the task pull data from the stream, or OUT if the task pushes data to the stream.

e Return type: Any object or a generic class object. In this case the direction is always OUT. Basic types are
also supported as return types. However, we do not recommend to use them because they cause an implicit
synchronization

e StdIOStream: For non-native tasks (binaries, MPI, and OmpSs) COMPSs supports the auto-
matic redirection of the Linux streams by specifying StdlOStream.STDIN, StdIOStream.STDOUT or
StdIOStream.STDERR. Notice that any parameter annotated with the stream annotation must be of type
Type. FILE, and with direction Direction.IN for StdIOStream.STDIN or Direction.OUT/ Direction.INOUT

4.1. Java 61

COMPSs Documentation, 2.9

for StdIOStream.STDOUT and StdIOStream.STDERR.

e Prefix: For non-native tasks (binaries, MPI, and OmpSs) COMPSs allows to prepend a constant String to
the parameter value to use the Linux joint-prefixes as parameters of the binary execution.

e Weight: Provides a hint of the size of this parameter compared to a default one. For instance, if a parameters
is 3 times larger than the others, set the weigh property of this paramenter to 3.0. (Default is 1.0).

e keepRename: Runtime rename files to avoid some data dependencies. It is transparent to the final user
because we rename back the filename when invoking the task at worker. This management creates an
overhead, if developers know that the task is not name nor extension sensitive (i.e can work with rename),
they can set this property to true to reduce the overhead.

Constraints annotations

e @Constraints: The user can specify the capabilities that a resource must have in order to run a method.
For example, in a cloud execution the COMPSs runtime creates a VM that fulfils the specified requirements
in order to perform the execution. A full description of the supported constraints can be found in Table 14.

Scheduler annotations

e @SchedulerHints: It specifies hints for the scheduler about how to treat the task.
— isReplicated “true” if the method must be executed in all the worker nodes when invoked from the
main application (it is a String not a Java boolean).
— isDistributed “true” if the method must be scheduled in a forced round robin among the available
resources (it is a String not a Java boolean).

4.1.1.3 Alternative method implementations

Since version 1.2, the COMPSs programming model allows developers to define sets of alternative implementations
of the same method in the Java annotated interface. Code 10 depicts an example where the developer sorts
an integer array using two different methods: merge sort and quick sort that are respectively hosted in the
packagepath. Mergesort and packagepath. Quicksort classes.

Code 10: Alternative sorting method definition example

@Method(declaringClass = "packagepath.Mergesort")
@Method(declaringClass = "packagepath.Quicksort")
void sort(
Q@Parameter (type = Type.OBJECT, direction = Direction.INOUT)
int[] array

)

As depicted in the example, the name and parameters of all the implementations must coincide; the only difference
is the class where the method is implemented. This is reflected in the attribute declaringClass of the @Method
annotation. Instead of stating that the method is implemented in a single class, the programmer can define several
instances of the @Method annotation with different declaring classes.

As independent remote methods, the sets of equivalent methods might have common restrictions to be fulfilled
by the resource hosting the execution. Or even, each implementation can have specific constraints. Through
the @Constraints annotation, developers can specify the common constraints for a whole set of methods. In the
following example (Code 11) only one core is required to run the method of both sorting algorithms.

Code 11: Alternative sorting method definition with constraint
example

@Constraints(computingUnits = "1")
@Method (declaringClass = "packagepath.Mergesort")
@Method (declaringClass = "packagepath.Quicksort")

(continues on next page)

62 Chapter 4. Application development

COMPSs Documentation, 2.9

(continued from previous page)

void sort(
Q@Parameter (type = Type.OBJECT, direction = Direction.INOUT)
int[] array

)

However, these sorting algorithms have different memory consumption, thus each algorithm might require a specific
amount of memory and that should be stated in the implementation constraints. For this purpose, the developer
can add a @Constraints annotation inside each @Method annotation containing the specific constraints for that
implementation. Since the Mergesort has a higher memory consumption than the quicksort, the Code 12 sets a
requirement of 1 core and 2GB of memory for the mergesort implementation and 1 core and 500MB of memory
for the quicksort.

Code 12: Alternative sorting method definition with specific con-
straints example

OConstraints(computingUnits = "1")

@Method(declaringClass = "packagepath.Mergesort", constraints = Q@Constraints(memorySize = "2.0
Hll))

@Method(declaringClass = "packagepath.Quicksort", constraints = QConstraints(memorySize = "0.5
t_»ll))

void sort(
OParameter (type = Type.OBJECT, direction = Direction.INOUT)
int[] array

)

4.1.1.4 Java API calls
COMPSs also provides a explicit synchronization call, namely barrier, which can be used through the COMPSs
Java API. The use of barrier forces to wait for all tasks that have been submitted before the barrier is called.

When all tasks submitted before the barrier have finished, the execution continues (Code 13).

Code 13: COMPSs.barrier() example

import es.bsc.compss.api.COMPSs;

public class Main {
public static void main(String[] args) {

// Setup counterNamel and counterName2 files
// Ezecute task increment 1
SimpleImpl.increment (counterNamel) ;
// API Call to watt for all tasks
COMPSs.barrier();
// Ezecute task increment 2
SimpleImpl.increment (counterName2) ;

When an object is used in a task, COMPSs runtime store the references of these object in the runtime data
structures and generate replicas and versions in remote workers. COMPSs is automatically removing these replicas
for obsolete versions. However, the reference of the last version of these objects could be stored in the runtime
data-structures preventing the garbage collector to remove it when there are no references in the main code. To
avoid this situation, developers can indicate the runtime that an object is not going to use any more by calling the
deregisterObject API call. Code 14 shows a usage example of this API call.

4.1. Java 63

COMPSs Documentation, 2.9

Code 14: COMPSs.deregisterObject() example

import es.bsc.compss.api.COMPSs;

public class Main {
public static void main(String[] args) {

final int ITERATIONS = 10;

for (int 1 = 0; i < ITERATIONS; ++i) {
Dummy d = new Dummy(d) ;
TaskImpl.task(d);
/*¥A1lows garbage collector to delete the

object from memory when the task is finished */

COMPSs.deregisterUbject ((Object) d);

To synchronize files, the getFile API call synchronizes a file, returning the last version of file with its original name.
Code 15 contains an example of its usage.

Code 15: COMPSs.getFile() example

import es.bsc.compss.api.COMPSs;

public class Main {
public static void main(String[] args) {
for (int i=0; i<1; i++) {
TaskImpl.task(FILE_NAME, 1i);
¥
/*Waits until all tasks have finished and
synchronizes the file with its last version*/

COMPSs.getFile (FILE_NAME) ;

4.1.1.5 Managing Failures in Tasks

COMPSs provide mechanism to manage failures in tasks. Developers can specify two properties in the task
definition what the runtime should do when a task is blocked or failed.

The timeQut property indicates the runtime that a task of this type is considered failed when its duration is larger
than the value specified in the property (in seconds)

The onFailure property indicates what to do when a task of this type is failed. The possible values are:

OnFaiure. RETRY (Default): The task is executed twice in the same worker and a different worker.
OnFailure. CANCEL _SUCCESSORS: All successors of this task are canceled.

OnFailure. FAIL: The task failure produces a failure of the whole application.

OnFailure. IGNORE: The task failure is ignored and the output parameters are set with empty values.

Usage examples of these properties are shown in Code 16

Code 16: Failure example

public interface FailuresItf{
@Method(declaringClass = "example.Example", timeQut = "3000", onFailure = OnFailure.IGNORE)
void task_example(QParameter(type = Type.FILE, direction = Direction.OUT) String fileName);

64 Chapter 4. Application development

COMPSs Documentation, 2.9

4.1.1.6 Tasks Groups and COMPSs exceptions

COMPSs allows users to define task groups which can be combined with an special exception (COMPSsException)
that the user can use to achieve parallel distributed try/catch blocks; Code 17 shows an example of COMPSsEz-
ception raising. In this case, the group definition is blocking, and waits for all task groups to finish. If a task
of the group raises a COMPSsFxception, it will be captured by the runtime which reacts to it by canceling the
running and pending tasks of the group and forwarding the COMPSsException to enable the execution except
clause. Consequenty, the COMPSsException must be combined with task groups.

Code 17: COMPSs Exception example

try (COMPSsGroup a = new COMPSsGroup("GroupA")) {
for (int j = 0; j < N; j++) {
Test.taskWithCOMPSsException (FILE_NAME) ;
}
} catch (COMPSsException e) {
Test.otherTask (FILE_NAME) ;
}

It is possible to use a non-blocking task group for asynchronous behaviour (see Code 18). In this case, the
try/catch can be defined later in the code surrounding the COMPSs.barrierGroup, enabling to check exception
from the defined groups without retrieving data while other tasks are being executed.

Code 18: COMPSs Exception example

for (int i=0; i<10; i++){
try (COMPSsGroup a = new COMPSsGroup("Group" + i, false)) {
for (int j = 0; j < N; j++) {
Test.taskWithCOMPSsException(FILE_NAME) ;
}
} catch (Exception e) {
//This ts just for comptlation. Ezception not catch here!
}
}
for (int i=0; i<10; i++){
// The group exception will be thrown from the barrier
try {
COMPSs.barrierGroup("FailedGroup2") ;
} catch (COMPSsException e) {
System.out.println("Exception caught in barrier!!");
Test.otherTask (FILE_NAME) ;

4.1.2 Application Compilation

A COMPSs Java application needs to be packaged in a jar file containing the class files of the main code, of
the methods implementations and of the Itf annotation. This jar package can be generated using the commands
available in the Java SDK or creating your application as a Apache Maven project.

To integrate COMPSs in the maven compile process you just need to add the compss-api artifact as dependency
in the application project.

4.1. Java 65

COMPSs Documentation, 2.9

<dependencies>
<dependency>
<groupIld>es.bsc.compss</groupld>
<artifactId>compss-api</artifactId>
<version>${compss.version}</version>
</dependency>
</dependencies>

To build the jar in the maven case use the following command

$ mvn package

Next we provide a set of commands to compile the Java Simple application (detailed at Java Sample applications).

$ cd tutorial_apps/java/simple/src/main/java/simple/
$~/tutorial_apps/java/simple/src/main/java/simple$ javac *.java
$~/tutorial_apps/java/simple/src/main/java/simple$ cd ..
$~/tutorial_apps/java/simple/src/main/java$ jar cf simple.jar simple/
$~/tutorial_apps/java/simple/src/main/java$ mv ./simple.jar ../../../jar/

In order to properly compile the code, the CLASSPATH variable has to contain the path of the compss-engine.jar
package. The default COMPSs installation automatically add this package to the CLASSPATH; please check
that your environment variable CLASSPATH contains the compss-engine.jar location by running the following
command:

$ echo $CLASSPATH | grep compss-engine

If the result of the previous command is empty it means that you are missing the compss-engine.jar package in
your classpath. We recommend to automatically load the variable by editing the .bashrc file:

$ echo "# COMPSs variables for Java compilation" >> ~/.bashrc
$ echo "export CLASSPATH=$CLASSPATH:/opt/COMPSs/Runtime/compss-engine.jar" >> ~/.bashrc

If you are using an IDE (such as Eclipse or NetBeans) we recommend you to add the compss-engine.jar file as an
external file to the project. The compss-engine.jar file is available at your current COMPSs installation under the
following path: /opt/COMPSs/Runtime/compss-engine.jar

Please notice that if you have performed a custom installation, the location of the package can be different.

4.1.3 Application Execution

A Java COMPSs application is executed through the runcompss script. An example of an invocation of the script
is:

$ runcompss --classpath=/home/compss/tutorial_apps/java/simple/jar/simple.jar simple.Simple 1

A comprehensive description of the runcompss command is available in the Executing COMPSs applications section.

In addition to Java, COMPSs supports the execution of applications written in other languages by means of
bindings. A binding manages the interaction of the no-Java application with the COMPSs Java runtime, providing
the necessary language translation.

66 Chapter 4. Application development

COMPSs Documentation, 2.9

4.2 Python Binding

COMPSs features a binding for Python 2 and 3 applications. The next subsections explain how to program a
Python application for COMPSs and a brief overview on how to execute it.

4.2.1 Programming Model

The programming model for Python is structured in the following sections:

4.2.1.1 Task Selection
As in the case of Java, a COMPSs Python application is a Python sequential program that contains calls to tasks.
In particular, the user can select as a task:

e Functions
e Instance methods: methods invoked on objects.
e (Class methods: static methods belonging to a class.

The task definition in Python is done by means of Python decorators instead of an annotated interface. In partic-
ular, the user needs to add a @task decorator that describes the task before the definition of the function/method.

As an example (Code 19), let us assume that the application calls a function func, which receives a file path (string
parameter) and an integer parameter. The code of func updates the file.

Code 19: Python application example

def func(file_path, value):
update the file 'file_path'

def main():
my_file = '/tmp/sample_file.txt'
func(my_file, 1)

if __name__ == '__main__"':
main()

In order to select func as a task, the corresponding @task decorator needs to be placed right before the definition
of the function, providing some metadata about the parameters of that function. The @task decorator has to be
imported from the pycompss library (Code 20).

Code 20: Python task import

from pycompss.api.task import task

Otask()
def func():

Tip: The PyCOMPSs task api also provides the @task decorator in camelcase (@Task) with the same functionality.

The rationale of providing both @task and @Task relies on following the PEP8 naming convention. Decorators are
usually defined using lowercase, but since the task decorator is implemented following the class pattern, its name
is also available as camelcase.

4.2. Python Binding 67

COMPSs Documentation, 2.9

Function parameters

The @task decorator does not interfere with the function parameters, Consequently, the user can define the function
parameters as normal python functions (Code 21).

Code 21: Task function parameters example

Qtask()
def func(paraml, param2):

The use of *args and **kwargs as function parameters is supported (Code 22).

Code 22: Python task *args and **kwargs example

Otask(returns=int)
def argkwarg_func(*args, **kwargs):

And even with other parameters, such as usual parameters and default defined arguments. Code 23 shows an
example of a task with two three parameters (whose one of them (’s’) has a default value), *args and **kwargs.

Code 23: Python task with default parameters example

Otask(returns=int)
def multiarguments_func(v, w, s=2, *args, **kwargs):

Tasks within classes

Functions within classes can also be declared as tasks as normal functions. The main difference is the existence of
the self parameter which enables to modify the callee object.

For tasks corresponding to instance methods, by default the task is assumed to modify the callee object (the object
on which the method is invoked). The programmer can tell otherwise by setting the target direction argument of
the @task decorator to IN (Code 24).

Code 24: Python instance method example

class MyClass(object):

Otask(target_direction=IN)
def instance_method(self):
self is NOT modified here

Class methods and static methods can also be declared as tasks. The only requirement is to place the @classmethod
or @staticmethod over the @task decorator (Code 25). Note that there is no need to use the target_ direction flag
within the @task decorator.

Code 25: Python @classmethod and @staticmethod tasks exam-
ple

class MyClass(object):

Q@classmethod
Otask()
def class_method(cls, a, b, c):

(continues on next page)

68 Chapter 4. Application development

COMPSs Documentation, 2.9

(continued from previous page)

@staticmethod
Otask(returns=int)
def static_method(a, b, c):

Tip: Tasks inheritance and overriding supported!!!

Caution: The objects used as task parameters MUST BE serializable:

e Implement the __getstate__ and __setstate__ functions in their classes for those objects that are not
automatically serializable.

e The classes must not be declared in the same file that contains the main method (if __name__=='__-
main__') (known pickle issue).

Important: For instances of user-defined classes, the classes of these objects should have an empty constructor,
otherwise the programmer will not be able to invoke task instance methods on those objects (Code 26).

Code 26: Using user-defined classes as task returns

In file utils.py
from pycompss.api.task import task
class MyClass(object):
def __init__(self): # empty constructor

Qtask()
def yet_another_task(self):
do something with the self attributes

In file main.py
from pycompss.api.task import task
from utils import MyClass

Otask(returns=MyClass)
def ret_func():

myc = MyClass()
return myc

def main():
o = ret_func()
tnvoking a task instance method on a future object can only

#
be done when an empty constructor is defined in the object's
class

o

.yet_another_task()

if __name__=='__main__"':

main()

4.2. Python Binding 69

COMPSs Documentation, 2.9

4.2.1.2 Task Parameters

The metadata corresponding to a parameter is specified as an argument of the @task decorator, whose name is the
formal parameter’s name and whose value defines the type and direction of the parameter. The parameter types
and directions can be:

Types
Primitive types (integer, long, float, boolean, strings)
Objects (instances of user-defined classes, dictionaries, lists, tuples, complex numbers)
Files
Collections (instances of lists)
Dictionaries (instances of dictionary)
Streams
e [0 streams (for binaries)
Direction

Read-only (IN - default or IN_DELETE)
Read-write (INOUT)

Write-only (OUT)

Concurrent (CONCURRENT)
Commutative (COMMUTATIVE)

COMPSs is able to automatically infer the parameter type for primitive types, strings and objects, while the user
needs to specify it for files. On the other hand, the direction is only mandatory for INOUT and OUT parameters.

Note: please note that in the following cases there is no need to include an argument in the @task decorator for
a given task parameter:

e Parameters of primitive types (integer, long, float, boolean) and strings: the type of these parameters can
be automatically inferred by COMPSs, and their direction is always IN.

e Read-only object parameters: the type of the parameter is automatically inferred, and the direction defaults
to IN.

The parameter metadata is available from the pycompss library (Code 27)

Code 27: Python task parameters import

from pycompss.api.parameter import *

Objects

The default type for a parameter is object. Consequently, there is no need to use a specific keyword. However, it
is necessary to indicate its direction (unless for input parameters):

PARAMETER DESCRIPTION

IN The parameter is read-only. The type will be inferred.

IN DELETE The parameter is read-only. The type will be inferred. Will be automatically removed after
its usage.

INOUT The parameter is read-write. The type will be inferred.

ouT The parameter is write-only. The type will be inferred.

CONCUR- The parameter is read-write with concurrent access. The type will be inferred.

RENT

COMMUTA- The parameter is read-write with commutative access. The type will be inferred.

TIVE

70 Chapter 4. Application development

COMPSs Documentation, 2.9

Continuing with the example, in Code 28 the decorator specifies that func has a parameter called obj, of type
object and INOUT direction. Note how the second parameter, i, does not need to be specified, since its type
(integer) and direction (IN) are automatically inferred by COMPSs.

Code 28: Python task example with input output object (INOUT)
and input object (IN)

from pycompss.api.task import task
from pycompss.api.parameter import INOUT, IN

Otask(obj=INOUT, i=IN)
def func(obj, i):

The previous task definition can be simplified due to the default IN direction for objects (Code 29):

Code 29: Python task example with input output object (INOUT)
simplified

from pycompss.api.task import task
from pycompss.api.parameter import INOUT

Otask(obj=INOUT)
def func(obj, i):

Tip: In order to choose the apropriate direction, a good exercise is to think if the function only consumes the
object (IN), modifies the object (INOUT), or produces an object (OUT).

Tip: The IN DELETE definition is intended to one use objects. Consequently, the information related to the
object will be released as soon as possible.

The user can also define that the access to a object is concurrent with CONCURRENT (Code 30). Tasks that
share a CONCURRENT parameter will be executed in parallel, if any other dependency prevents this. The
CONCURRENT direction allows users to have access from multiple tasks to the same object/file during their
executions.

Code 30: Python task example with CONCURRENT

from pycompss.api.task import task
from pycompss.api.parameter import CONCURRENT

@task (obj=CONCURRENT)
def func(obj, i):

Important: COMPSs does not manage the interaction with the objects used/modified concurrently. Taking
care of the access/modification of the concurrent objects is responsibility of the developer.

Or even, the user can also define that the access to a parameter is commutative with COMMUTATIVE (Code 31).
The execution order of tasks that share a COMMUTATIVE parameter can be changed by the runtime following
the commutative property.

4.2. Python Binding 71

COMPSs Documentation, 2.9

Code 31: Python task example with COMMUTATIVE

from pycompss.api.task import task
from pycompss.api.parameter import COMMUTATIVE

Otask(obj=COMMUTATIVE)
def func(obj, 1i):

Files

It is possible to define that a parameter is a file (FILE), and its direction:

PARAMETER DESCRIPTION

FILE/FILE IN The parameter is a file. The direction is assumed to be IN.
FILE INOUT The parameter is a read-write file.

FILE OUT The parameter is a write-only file.

FILE CONCURRENT The parameter is a concurrent read-write file.

FILE COMMUTATIVE | The parameter is a commutative read-write file.

Continuing with the example, in Code 32 the decorator specifies that func has a parameter called f, of type FILE
and INOUT direction (FILE_INQUT).

Code 32: Python task example with input output file (FILE -
INOUT)

from pycompss.api.task import task
from pycompss.api.parameter import FILE_INOUT

Otask (f=FILE_INOUT)
def func(f):
fd = open(f, 'a+')

append something to fd
fd.close()

def main():
f = "/path/to/file.extension"

Populate f
func(£)

Tip: The value for a FILE (e.g. £) is a string pointing to the file to be used at func task. However, it can also be
None if it is optional. Consequently, the user can define task that can receive a FILE or not, and act accordingly.
For example (Code 33):

Code 33: Python task example with optional input file (FILE IN)

from pycompss.api.task import task
from pycompss.api.parameter import FILE_IN

Otask (f=FILE_IN)
def func(f):
if f:

(continues on next page)

72 Chapter 4. Application development

COMPSs Documentation, 2.9

(continued from previous page)

Do something with the file
with open(f, 'r') as fd:
num_lines = len(rd.readlines())
return num_lines
else:
Do something when there ts no input file
return -1

def main():

f = "/path/to/file.extension"

Populate f

num_lines_f = func(f) # num_lines_f == actual number of lines of file.extension
g = None

num_lines_g = func(g) # num_lines_g == -1

The user can also define that the access to file parameter is concurrent with FILE CONCURRENT (Code 34).
Tasks that share a FILE CONCURRENT parameter will be executed in parallel, if any other dependency prevents
this. The CONCURRENT direction allows users to have access from multiple tasks to the same file during their
executions.

Code 34: Python task example with FILE CONCURRENT

from pycompss.api.task import task
from pycompss.api.parameter import FILE_CONCURRENT

Otask (f=FILE_CONCURRENT)
def func(f, 1i):

Important: COMPSs does not manage the interaction with the files used /modified concurrently. Taking care
of the access/modification of the concurrent files is responsibility of the developer.

Or even, the user can also define that the access to a parameter is a file FILE COMMUTATIVE (Code 35). The
execution order of tasks that share a FILE COMMUTATIVE parameter can be changed by the runtime following
the commutative property.

4.2. Python Binding 73

COMPSs Documentation, 2.9

Code 35: Python task example with FILE COMMUTATIVE

from pycompss.api.task import task
from pycompss.api.parameter import FILE_COMMUTATIVE

@task (f=FILE_COMMUTATIVE)
def func(f, i):

Directories

In addition to files, it is possible to define that a parameter is a directory (DIRECTORY), and its direction:

PARAMETER DESCRIPTION

DIRECTORY - | The parameter is a directory and the direction is IN. The directory will be compressed
IN before any transfer amongst nodes.

DIRECTORY - | The parameter is a read-write directory. The directory will be compressed before any
INOUT transfer amongst nodes.

DIRECTORY - | The parameter is a write-only directory. The directory will be compressed before any
ouT transfer amongst nodes.

The definition of a DIRECTORY parameter is shown in Code 36. The decorator specifies that func has a parameter
called d, of type DIRECTORY and INOUT direction.

Code 36: Python task example with input output directory (DI-
RECTORY_ INOUT)

from pycompss.api.task import task
from pycompss.api.parameter import DIRECTORY_INOUT

Otask (d=DIRECTORY_INOUT)
def func(d):

Collections

It is possible to specify that a parameter is a collection of elements (e.g. list) and its direction.

PARAMETER DESCRIPTION

COLLECTION IN The parameter is read-only collection.

COLLECTION _IN_- The parameter is read-only collection for single usage (will be automatically re-
DELETE moved after its usage).

COLLECTION_INOUT | The parameter is read-write collection.

COLLECTION _OUT The parameter is write-only collection.

In this case (Code 37), the list may contain sub-objects that will be handled automatically by the runtime. It is
important to annotate data structures as collections if in other tasks there are accesses to individual elements of
these collections as parameters. Without this annotation, the runtime will not be able to identify data dependences
between the collections and the individual elements.

74 Chapter 4. Application development

COMPSs Documentation, 2.9

Code 37: Python task example with COLLECTION (IN)

from pycompss.api.task import task
from pycompss.api.parameter import COLLECTION

Otask(my_collection=COLLECTION)
def func(my_collection):
for element in my_collection:

The sub-objects of the collection can be collections of elements (and recursively). In this case, the runtime also
keeps track of all elements contained in all sub-collections. In order to improve the performance, the depth of the
sub-objects can be limited through the use of the depth parameter (Code 38)

Code 38: Python task example with COLLECTION IN and
Depth

from pycompss.api.task import task
from pycompss.api.parameter import COLLECTION_IN

Otask(my_collection={Type:COLLECTION_IN, Depth:2})
def func(my_collection):
for inner_collection in my_collection:
for element in inner_collection:
The contents of element will not be tracked

Tip: A collection can contain dictionaries, and will be analyzed automatically.

Tip: If the collection is intended to be used only once with IN direction, the COLLECTION_IN_DELETE type is
recommended, since it automatically removes the entire collection after the task. This enables to release as soon
as possible memory and storage.

Collections of files

It is also possible to specify that a parameter is a collection of files (e.g. list) and its direction.

PARAMETER DESCRIPTION

COLLECTION FILE/COLLECTION_ FILE IN | The parameter is read-only collection of files.
COLLECTION FILE INOUT The parameter is read-write collection of files.
COLLECTION _FILE OUT The parameter is write-only collection of files.

In this case (Code 39), the list may contain files that will be handled automatically by the runtime. It is important
to annotate data structures as collections if in other tasks there are accesses to individual elements of these
collections as parameters. Without this annotation, the runtime will not be able to identify data dependences
between the collections and the individual elements.

Code 39: Python task example with COLLECTION _FILE (IN)

from pycompss.api.task import task
from pycompss.api.parameter import COLLECTION_FILE

Otask(my_collection=COLLECTION_FILE)

(continues on next page)

4.2. Python Binding 75

COMPSs Documentation, 2.9

(continued from previous page)

def func(my_collection):
for file in my_collection:

The file of the collection can be collections of elements (and recursively). In this case, the runtime also keeps track
of all files contained in all sub-collections. In order to improve the performance, the depth of the sub-files can be
limited through the use of the depth parameter as with objects (Code 38)

Dictionaries

It is possible to specify that a parameter is a dictionary of elements (e.g. dict) and its direction.

PARAMETER DESCRIPTION

DICTIONARY IN The parameter is read-only dictionary.

DICTIONARY IN - The parameter is read-only dictionary for single usage (will be automatically re-
DELETE moved after its usage).

DICTIONARY INOUT | The parameter is read-write dictionary.

As with the collections, it is possible to specify that a parameter is a dictionary of elements (e.g. dict) and its direc-
tion (DICTIONARY IN or DICTIONARY INOUT) (Code 40), whose sub-objects will be handled automatically
by the runtime.

Code 40: Python task example with DICTIONARY (IN)

from pycompss.api.task import task
from pycompss.api.parameter import DICTIONARY

Otask(my_dictionary=DICTIONARY)
def func(my_dictionary):
for k, v in my_dictionary.items():

The sub-objects of the dictionary can be collections or dictionary of elements (and recursively). In this case, the
runtime also keeps track of all elements contained in all sub-collections/sub-dictionaries. In order to improve the
performance, the depth of the sub-objects can be limited through the use of the depth parameter (Code 41)

Code 41: Python task example with DICTIONARY IN and
Depth

from pycompss.api.task import task
from pycompss.api.parameter import DICTIONARY_IN

Otask(my_dictionary={Type:DICTIONARY_IN, Depth:2})
def func(my_dictionary):
for key, inner_dictionary in my_dictionary.items():
for sub_key, sub_value in inner_dictionary.items():
The contents of element will not be tracked

Tip: A dictionary can contain collections, and will be analyzed automatically.

Tip: If the dictionary is intended to be used only once with IN direction, the DICTIONARY_IN_DELETE type is
recommended, since it automatically removes the entire dictionary after the task. This enables to release as soon

76 Chapter 4. Application development

COMPSs Documentation, 2.9

as possible memory and storage.

Streams

It is possible to use streams as input or output of the tasks by defining that a parameter is STREAM and its
direction.

PARAMETER DESCRIPTION
STREAM IN The parameter is a read-only stream.
STREAM OUT | The parameter is a write-only stream.

For example, Code 42 shows an example using STREAM IN or STREAM OUT parameters This parameters
enable to mix a task-driven workflow with a data-driven workflow.

Code 42: Python task example with STREAM IN and
STREAM OUT

from pycompss.api.task import task
from pycompss.api.parameter import STREAM_IN
from pycompss.api.parameter import STREAM_OUT

Otask (ods=STREAM_QUT)
def write_objects(ods):

for i in range (NUM_OBJECTS):
Build object
obj = MyObject()
Publish object
ods.publish(obj)

Mark the stream for closure
ods.close()

O@task (ods=STREAM_IN, returns=int)
def read_objects(ods):

num_total = 0

while not ods.is_closed():
Poll new objects
new_objects = ods.poll()
Process files

Accumulate read files
num_total += len(new_objects)

Return the number of processed files
return num_total

The stream parameter also supports Files (Code 43).

Code 43: Python task example with STREAM IN and
STREAM OUT for files

from pycompss.api.task import task
from pycompss.api.parameter import STREAM_IN

(continues on next page)

4.2. Python Binding 77

COMPSs Documentation, 2.9

(continued from previous page)

from pycompss.api.parameter import STREAM_OUT

Otask (fds=STREAM_OUT)
def write_files(fds):

for i in range(NUM_FILES):
file_name = str(uuid.uuid4())
Write file
with open(file_path, 'w') as f:
f.write("Test " + str(i))

Mark the stream for closure
fds.close()

O@task (fds=STREAM_IN, returns=int)
def read_files(fds):

num_total = 0
while not fds.is_closed():
Poll new files
new_files = fds.poll()
Process files
for nf in new_files:
with open(nf, 'r') as f:

Accumulate read files

num_total += len(new_files)

Return the number of processed files
return num_total

In addition, the stream parameter can also be defined for binary tasks (Code 44).

Code 44: Python task example with STREAM OUT for binaries

from pycompss.api.task import task
from pycompss.api.binary import binary

from pycompss.api.parameter import STREAM_OUT

Obinary(binary="file_generator.sh")
Otask (fds=STREAM_OUT)
def write_files(fds):

Equivalent to: ./file_generator.sh > fds

pass

78

Chapter 4. Application development

COMPSs Documentation, 2.9

Standard Streams

Finally, a parameter can also be defined as the standard input, standard output, and standard error.

PARAMETER | DESCRIPTION

STDIN The parameter is a IO stream for standard input redirection.
STDOUT The parameter is a IO stream for standard output redirection.
STDERR The parameter is a IO stream for standard error redirection.

Important: STDIN, STDOUT and STDERR are only supported in binary tasks

This is particularly useful with binary tasks that consume/produce from standard IO streams, and the user wants
to redirect the standard input/output/error to a particular file. Code 45 shows an example of a binary task that
invokes output_generator.sh which produces the result in the standard output, and the task takes that output and
stores it into fds.

Code 45: Python task example with STDOUT for binaries

from pycompss.api.task import task
from pycompss.api.binary import binary
from pycompss.api.parameter import STDOUT

@binary(binary="output_generator.sh")

@task (£ds=STDOUT)

def write_files(fds):
Equivalent to: ./file_generator.sh > fds
pass

4.2.1.3 Other Task Parameters

Task time out

The user is also able to define the time out of a task within the @task decorator with the time_out=<TIME_IN_-
SECONDS> hint. The runtime will cancel the task if the time to execute the task exceeds the time defined by the
user. For example, Code 46 shows how to specify that the unknown_duration_task maximum duration before
canceling (if exceeded) is one hour.

Code 46: Python task time out example

Otask(time_out=3600)
def unknown_duration_task(self):

Scheduler hints

The programmer can provide hints to the scheduler through specific arguments within the @task decorator.

For instance, the programmer can mark a task as a high-priority task with the priority argument of the @task
decorator (Code 47). In this way, when the task is free of dependencies, it will be scheduled before any of the
available low-priority (regular) tasks. This functionality is useful for tasks that are in the critical path of the
application’s task dependency graph.

4.2. Python Binding 79

COMPSs Documentation, 2.9

Code 47: Python task priority example

Otask(priority=True)
def func():

Moreover, the user can also mark a task as distributed with the is_distributed argument or as replicated with
the is_replicated argument (Code 48). When a task is marked with is_ distributed=True, the method must be
scheduled in a forced round robin among the available resources. On the other hand, when a task is marked with
is_ replicated=True, the method must be executed in all the worker nodes when invoked from the main application.
The default value for these parameters is False.

Code 48: Python task is_distributed and is_replicated examples

Otask(is_distributed=True)
def func():

Otask(is_replicated=True)
def func2():

On failure task behaviour

In case a task fails, the whole application behaviour can be defined using the @on_ failure decorator on top of the
@task decorator (Code 49). It has four possible values that can be defined with the management parameter:
‘RETRY’, "CANCEL_ SUCCESSORS’, ’FAIL’ and IGNORE’. 'RETRY” is the default behaviour, making
the task to be executed again (on the same worker or in another worker if the failure remains). 'CANCEL -
SUCCESSORS’ ignores the failed task and cancels the execution of the successor tasks, 'FAIL’ stops the whole
execution once a task fails and JGNORE’ ignores the failure and continues with the normal execution.

Code 49: Python task @on_ failure decorator example

from pycompss.api.task import task
from pycompss.api.on_failure import on_failure

Qon_failure(management ='CANCEL_SUCCESSORS')
@task()
def funcQ:

Since the "CANCEL_SUCCESSORS’ and 'IGNORE’ policies enable to continue the execution accepting
that tasks may have failed, it is possible to define the value for the objects and/or files produced by the failed tasks
(INOUT, OUT, FILE_INOUT, FILE OUT and return). This is considered as the default output objects/files.
For example, Code 50 shows a the func task which returns one integer. In the case of failure within func, the
execution of the workflow will continue since the on failure management policy is set to IGNORE’, with 0 as
return value.

Code 50: Python task @on_ failure example with default return
value

from pycompss.api.task import task
from pycompss.api.on_failure import on_failure

Qon_failure (management='IGNORE', returns=0)
Otask(returns=int)

(continues on next page)

80 Chapter 4. Application development

COMPSs Documentation, 2.9

(continued from previous page)

def func():

For the INOUT parameters, the default value can be set by using the parameter name of func in the @on_ failure
decorator. Code 51 shows how to define the default value for a FILE INOUT parameter (named f_inout). The
example is also valid for FILE _OUT values.

Code 51: Python task @on_ failure example with default FILE -
INOUT value

from pycompss.api.task import task
from pycompss.api.on_failure import on_failure
from pycompss.api.parameter import FILE_INOUT

Qon_failure(management='IGNORE', f_inout="/path/to/default.file")
Otask(f_inout=FILE_INOUT)
def func(f_inout):

Tip: The default FILE INOUT/FILE OUT can be generated at task generation time by calling a function
instead of providing a static file path. Code 52 shows an example of this case, where the default value for the
output file produced by func is defined by the generate_empty function.

Code 52: Python task @on_ failure example with default FILE -
OUT value from function

from pycompss.api.task import task
from pycompss.api.on_failure import on_failure
from pycompss.api.parameter import FILE_OUT

def generate_empty(msg, name):
empty_file = "/tmp/empty_file_" + name
with open(empty_file, 'w') as f:
f.write("EMPTY FILE " + msg)
return empty_file

@on_failure (management='IGNORE', f_out=generate_empty("OUT", "out.tmp"))
Otask(f_out=FILE_OUT)
def func(f_inout):

4.2.1.4 Task Parameters Summary

Table 8 summarizes all arguments that can be found in the @task decorator.

Table 8: Arguments of the @task decorator

Argument Value

Formal parameter name

(default: empty)

The parameter is an object or a simple

IN

Read-only parameter, all types.

IN DELETE Read-only parameter, all types. Autom:
INOUT Read-write parameter, all types except |
ouT Write-only parameter, all types except f
CONCURRENT Concurrent read-write parameter, all ty;

4.2. Python Binding

81

COMPSs Documentation, 2.9

Table 8 — continued from previous page

Argument Value
COMMUTATIVE Commutative read-write parameter, all
FILE(IN) Read-only file parameter.
FILE INOUT Read-write file parameter.
FILE OUT Write-only file parameter.
FILE CONCURRENT Concurrent read-write file parameter.
FILE COMMUTATIVE Commutative read-write file parameter.
DIRECTORY(_IN) The parameter is a read-only directory.
DIRECTORY INOUT The parameter is a read-write directory.
DIRECTORY OUT the parameter is a write-only directory.
COLLECTION(IN) Read-only collection parameter (list).
COLLECTION IN DELETE Single usage read-only collection parame
COLLECTION INOUT Read-write collection parameter (list).
COLLECTION OUT Read-only collection parameter (list).
COLLECTION_FILE(IN) Read-only collection of files parameter (
COLLECTION FILE INOUT Read-write collection of files parameter
COLLECTION FILE OUT Read-only collection of files parameter (
DICTIONARY(_IN) Read-only dictionary parameter (dict).
DICTIONARY IN DELETE Single usage read-only collection diction
DICTIONARY INOUT Read-write dictionary parameter (dict).
STREAM IN The parameter is a read-only stream.
STREAM OUT The parameter is a write-only stream.
STDIN The parameter is a file for standard inp
STDOUT The parameter is a file for standard out
STDERR The parameter is a file for standard errc
Explicit: {Type:(empty—object)/FILE/COLLECTION/DICTIONARY, Direction:(empty=IN)/
DELETE/INOUT/OUT/CONCURRENT}

returns int (for integer and boolean), long, float, str, dict, list, tuple, user-defined classes

target direction INOUT (default), IN or CONCURRENT

priority True or False (default)

is_distributed

True or False (default)

is_replicated

True or False (default)

on_ failure

'RETRY’ (default), 'CANCEL _SUCCESSORS’, 'FAIL’ or IGNORE’

time out

int (time in seconds)

4.2.1.5 Task Return

If the function or method returns a value, the programmer can use the returns argument within the @task decorator.
In this argument, the programmer can specify the type of that value (Code 53).

Code 53: Python task returns example

Otask(returns=int)
def ret_func():
return 1

Moreover, if the function or method returns more than one value, the programmer can specify how many and their
type in the returns argument. Code 54 shows how to specify that two values (an integer and a list) are returned.

Code 54: Python task with multireturn example

Otask(returns=(int, list))
def ret_func():
return 1, [2, 3]

Alternatively, the user can specify the number of return statements as an integer value (Code 55). This way of
specifying the amount of return eases the returns definition since the user does not need to specify explicitly the

82 Chapter 4. Application development

COMPSs Documentation, 2.9

type of the return arguments. However, it must be considered that the type of the object returned when the task is
invoked will be a future object. This consideration may lead to an error if the user expects to invoke a task defined
within an object returned by a previous task. In this scenario, the solution is to specify explicitly the return type.

Code 55: Python task returns with integer example

Otask(returns=1)
def ret_func():
return "my_string"

Otask(returns=2)
def ret_func():
return 1, [2, 3]

Important: If the programmer selects as a task a function or method that returns a value, that value is not
generated until the task executes (Code 56).

Code 56: Task return value generation

Otask(return=MyClass)
def ret_func():
return MyClass(...)

if __name__=='__main__":

o = ret_func() # o is a future object

The object returned can be involved in a subsequent task call, and the COMPSs runtime will automatically find
the corresponding data dependency. In the following example, the object o is passed as a parameter and callee of
two subsequent (asynchronous) tasks, respectively (Code 57).

Code 57: Task return value subsequent usage

if name__=='__main__"':

0o 1s a future object
o = ret_func()

another_task(o)

o.yet_another_task()

Tip: PyCOMPSs is able to infer if the task returns something and its amount in most cases. Consequently,
the user can specify the task without returns argument. But this is discouraged since it requires code analysis,
including an overhead that can be avoided by using the returns argument.

Tip: PyCOMPSs is compatible with Python 3 type hinting. So, if type hinting is present in the code, PyCOMPSs
is able to detect the return type and use it (there is no need to use the returns):

4.2. Python Binding 83

COMPSs Documentation, 2.9

Code 58: Python task returns with type hinting

@task()
def ret_func() -> str:
return "my_string"

Otask()
def ret_func() -> (int, list):
return 1, [2, 3]

4.2.1.6 Other task types

In addition to this API functions, the programmer can use a set of decorators for other purposes.

For instance, there is a set of decorators that can be placed over the @task decorator in order to define the
task methods as a binary invocation (with the Binary decorator), as a OmpSs invocation (with the OmpSs
decorator), as a MPI invocation (with the MPI decorator), as a COMPSs application (with the COMPSs
decorator), as a task that requires multiple nodes (with the Multinode decorator), or as a Reduction task
that can be executed in parallel having a subset of the original input data as input (with the Reduction decorator).
These decorators must be placed over the @task decorator, and under the @constraint decorator if defined.

Consequently, the task body will be empty and the function parameters will be used as invocation parameters with
some extra information that can be provided within the @task decorator.

The following subparagraphs describe their usage.

Binary decorator

The @binary (or @Binary) decorator shall be used to define that a task is going to invoke a binary executable.

In this context, the @task decorator parameters will be used as the binary invocation parameters (following their
order in the function definition). Since the invocation parameters can be of different nature, information on their
type can be provided through the @task decorator.

Code 59 shows the most simple binary task definition without/with constraints (without parameters); please note
that Qconstraint decorator has to be provided on top of the others.

Code 59: Binary task example

from pycompss.api.task import task
from pycompss.api.binary import binary

@binary(binary="mybinary.bin")
@task()
def binary_func(Q):

pass

Qconstraint (computingUnits="2")
Obinary(binary="otherbinary.bin")
Q@task()
def binary_func2():

pass

The invocation of these tasks would be equivalent to:

$./mybinary.bin
$./otherbinary.bin # in resources that respect the constraint.

84 Chapter 4. Application development

COMPSs Documentation, 2.9

The @binary decorator supports the working_dir parameter to define the working directory for the execution of
the defined binary.

Code 60 shows a more complex binary invocation, with files as parameters:

Code 60: Binary task example 2

from pycompss.api.task import task
from pycompss.api.binary import binary
from pycompss.api.parameter import *

@binary(binary="grep", working dir=".")
Otask(infile={Type:FILE_IN_STDIN}, result={Type:FILE_OUT_STDOUT})
def grepper():

pass

This task definition is equivalent to the following, which is more werbose:
@binary(binary="grep", working_dir=".")

Otask(infile={Type:FILE_IN, StdIOStream:STDIN}, result={Type:FILE_OUT, StdIOStream:STDOUT})
def grepper(keyword, infile, result):

pass
if __name__=='__main__"':
infile = "infile.txt"

outfile = "outfile.txt"
grepper ("Hi", infile, outfile)

The invocation of the grepper task would be equivalent to:

$ # grep keyword < infile > result
$ grep Hi < infile.txt > outfile.txt

Please note that the keyword parameter is a string, and it is respected as is in the invocation call.

Thus, PyCOMPSs can also deal with prefixes for the given parameters. Code 61 performs a system call (Is) with
specific prefixes:

Code 61: Binary task example 3

from pycompss.api.task import task
from pycompss.api.binary import binary
from pycompss.api.parameter import *

Obinary(binary="1s")
Otask(hide={Type:FILE_IN, Prefix:"--hide="}, sort={Prefix:"--sort="})
def myLs(flag, hide, sort):

pass
if __name__=='__main__"':
flag = '-1'
hideFile = "fileToHide.txt"
sort = "time"

myLs(flag, hideFile, sort)

The invocation of the myLs task would be equivalent to:

$ # ls -1 --hide=hide --sort=sort
$ 1s -1 --hide=fileToHide.txt --sort=time

4.2. Python Binding 85

COMPSs Documentation, 2.9

This particular case is intended to show all the power of the @binary decorator in conjuntion with the @task deco-
rator. Please note that although the hide parameter is used as a prefix for the binary invocation, the file ToHide.txt
would also be transfered to the worker (if necessary) since its type is defined as FILE IN. This feature enables to
build more complex binary invocations.

In addition, the @binary decorator also supports the fail_by_exit_value parameter to define the failure of the
task by the exit value of the binary (Code 62). It accepts a boolean (True to consider the task failed if the exit
value is not 0, or False to ignore the failure by the exit value (default)), or a string to determine the environment
variable that defines the fail by exit value (as boolean). The default behaviour (fail_by_exit_value=False)
allows users to receive the exit value of the binary as the task return value, and take the necessary decissions based
on this value.

Code 62: Binary task example with fail_by_exit_value

@binary(binary="mybinary.bin", fail_by_exit_value=True)
Otask()
def binary_func():

pass

OmpSs decorator

The @ompss (or @OmpSs) decorator shall be used to define that a task is going to invoke a OmpSs executable
(Code 63).

Code 63: OmpSs task example

from pycompss.api.ompss import ompss

Qompss (binary="ompssApp.bin")
Otask()
def ompss_func():

pass

The OmpSs executable invocation can also be enriched with parameters, files and prefixes as with the @Qbinary
decorator through the function parameters and @task decorator information. Please, check Binary decorator for
more details.

MPI decorator

The @mpi (or @Mpi) decorator shall be used to define that a task is going to invoke a MPI executable (Code 64).

Code 64: MPI task example

from pycompss.api.mpi import mpi

Ompi(binary="mpiApp.bin", runner="mpirun", processes=2)
Otask()
def mpi_func():

pass

The MPI executable invocation can also be enriched with parameters, files and prefixes as with the @binary
decorator through the function parameters and @task decorator information. Please, check Binary decorator for
more details.

The @mpi decorator can be also used to execute a MPI for python (mpidpy) code. To indicate it, developers only
need to remove the binary field and include the Python MPI task implementation inside the function body as
shown in the following example (Code 65).

86 Chapter 4. Application development

COMPSs Documentation, 2.9

Code 65: MPI task example with collections and data layout

from pycompss.api.mpi import mpi

Ompi(processes=4)

@task()

def layout_test_with_all():
from mpi4py import MPI
rank = MPI.COMM_WORLD.rank
return rank

In both cases, users can also define, MPI + OpenMP tasks by using processes property to indicate the number
of MPI processes and computing_units in the Task Constraints to indicate the number of OpenMP threads per
MPI process.

The @mpi decorator can be combined with collections to allow the process of a list of parameters in the same
MPI execution. By the default, all parameters of the list will be deserialized to all the MPI processes. However,
a common pattern in MPI is that each MPI processes performs the computation in a subset of data. So, all data
serialization is not needed. To indicate the subset used by each MPI process, developers can use the data_layout
notation inside the MPI task declaration.

Code 66: MPI task example with collections and data layout

from pycompss.api.mpi import mpi

Ompi(processes=4, col_layout={block_count: 4, block_length: 2, stride: 13})
0task(col=COLLECTION_IN, returns=4)
def layout_test_with_all(col):

from mpid4py import MPI

rank = MPI.COMM_WORLD.rank

return datal[0]+data[1]+rank

Figure (Code 66) shows an example about how to combine MPT tasks with collections and data layouts. In this
example, we have define a MPI task with an input collection (col). We have also defined a data layout with
the property <arg_name>_layout and we specify the number of blocks (block_count), the elements per block
(block_length), and the number of element between the starting block points (stride).

COMPSs decorator

The @compss (or @QCOMPSs) decorator shall be used to define that a task is going to be a COMPSs application
(Code 67). It enables to have nested PyCOMPSs/COMPSs applications.

4.2. Python Binding 87

COMPSs Documentation, 2.9

Code 67: COMPSs task example

from pycompss.api.compss import compss

Qcompss (runcompss="${RUNCOMPSS}", flags="-d",
app_name="/path/to/simple_compss_nested.py", computing_nodes="2")
Qtask()
def compss_func():
pass

The COMPSs application invocation can also be enriched with the flags accepted by the runcompss executable.
Please, check execution manual for more details about the supported flags.

Multinode decorator

The @multinode (or @Multinode) decorator shall be used to define that a task is going to use multiple nodes (e.g.
using internal parallelism) (Code 68).

Code 68: Multinode task example

from pycompss.api.multinode import multinode

@multinode (computing_nodes="2")
Qtask()
def multinode_func():

pass

The only supported parameter is computing nodes, used to define the number of nodes required by the task (the
default value is 1). The mechanism to get the number of nodes, threads and their names to the task is through the
COMPSS NUM_NODES, COMPSS NUM _ THREADS and COMPSS HOSTNAMES environment variables
respectively, which are exported within the task scope by the COMPSs runtime before the task execution.

Reduction decorator

The @reduction (or @Reduction) decorator shall be used to define that a task is going to be subdivided into smaller
tasks that take as input a subset of the input data. (Code 69).

88 Chapter 4. Application development

COMPSs Documentation, 2.9

Code 69: Reduction task example

from pycompss.api.reduction import reduction

Oreduction(chunk_size="2")
@task()
def myreduction():

pass

The only supported parameter is chunk _size, used to define the size of the data that the generated tasks will get
as input parameter. The data given as input to the main reduction task is subdivided into chunks of the set size.

Container decorator

The @container (or @Container) decorator shall be used to define that a task is going to be executed within a
container (Code 70).

Code 70: Container task example

from pycompss.api.compss import container
from pycompss.api.task import task

from pycompss.api.parameter import *

from pycompss.api.api import compss_wait_on

Qcontainer (engine="DOCKER",
image="compss/compss")

Otask(returns=1, num=IN, in_str=IN, fin=FILE_IN)
def container_fun(num, in_str, fin):

Sample task body:

with open(fin, "r") as fd:

num_lines = len(fd.readlines())
str_len = len(in_str)
result = num * str_len * num_lines

You can tmport and use libraries available in the container

return result
if __name__=='__main__"':
result = container_fun(5, "hello", "dataset.txt")
result = compss_wait_on(result)
print("result: %s" 7 result)

The container fun task will be executed within the container defined in the @container decorator using the docker
engine with the compss/compss image. This task is pure python and you can import and use any library available
in the container

This feature allows to use specific containers for tasks where the library dependencies are met.

Tip: Singularity is also supported, and can be selected by setting the engine to SINGULARITY:

Ocontainer (engine=SINGULARITY)

In addition, the @container decorator can be placed on top of the @binary, @ompss or @mpi decorators. Code 71
shows how to execute the same example described in the Binary decorator section, but within the compss/compss
container using docker. This will execute the binary/ompss/mpi binary within the container.

4.2. Python Binding 89

COMPSs Documentation,

2.9

Code 71: Container binary task example

from
from
from
from

pycompss.
pycompss
pycompss.
pycompss

api.compss import container
.api.task import task
api.binary import binary
.api.parameter import *

Q@container (engine="DOCKER",

image="compss/compss")

@binary(binary="grep", working dir=".")
Otask(infile={Type:FILE_IN_STDIN}, result={Type:FILE_OUT_STDOUT})
def grepper():

pass
if __name__=='__main__"':
infile = "infile.txt"

outfile = "outfile.txt"
grepper("Hi", infile, outfile)

Other task types summary

Next tables summarizes the parameters of these decorators.

e @binary
Parameter Description
binary (Mandatory) String defining the full path of the binary that must be executed.
working dir | Full path of the binary working directory inside the COMPSs Worker.
e @ompss
Parameter Description
binary (Mandatory) String defining the full path of the binary that must be executed.
working dir | Full path of the binary working directory inside the COMPSs Worker.
e @mpi
Parameter | Description
binary (Optional) String defining the full path of the binary that must be executed. Empty
indicates python MPI code.
work- Full path of the binary working directory inside the COMPSs Worker.
ing dir
runner (Mandatory) String defining the MPI runner command.
pro- Integer defining the number of computing nodes reserved for the MPI execution (only
cesses a single node is reserved by default).

e @Qcompss

Parameter Description

runcompss (Mandatory) String defining the full path of the runcompss binary that must be
executed.

flags String defining the flags needed for the runcompss execution.

app name | (Mandatory) String defining the application that must be executed.

comput- Integer defining the number of computing nodes reserved for the COMPSs execution

ing nodes

(only a single node is reserved by default).

e @multinode

90

Chapter 4. Application development

COMPSs Documentation, 2.9

Parameter Description
comput- Integer defining the number of computing nodes reserved for the task execution
ing nodes (only a single node is reserved by default).

e @reduction

Parameter Description
chunk size | Size of data fragments to be given as input parameter to the reduction function.

e Q@Qcontainer

Parameter | Description
engine Container engine to use (e.g. DOCKER or SINGULARITY).
image Container image to be deployed and used for the task execution.

In addition to the parameters that can be used within the @task decorator, Table 9 summarizes the StdIOStream
parameter that can be used within the @task decorator for the function parameters when using the Q@binary,
@ompss and @Qmpi decorators. In particular, the StdIOStream parameter is used to indicate that a parameter is
going to be considered as a FILE but as a stream (e.g. >, < and 2 > in bash) for the @binary, @ompss and @mpi
calls.

Table 9: Supported StdlOStreams for the @binary, @ompss and
@mpi decorators

Parameter Description
(default: empty) | Not a stream.
STDIN Standard input.
STDOUT Standard output.
STDERR Standard error.

Moreover, there are some shorcuts that can be used for files type definition as parameters within the @task
decorator (Table 10). It is not necessary to indicate the Direction nor the StdIOStream since it may be already be
indicated with the shorcut.

4.2. Python Binding 91

COMPSs Documentation, 2.9

Table 10: File parameters definition shortcuts

Alias Description

COLLECTION(_ IN) Type: COLLECTION, Direction: IN
COLLECTION IN DELETE Type: COLLECTION, Direction: IN_DELETE
COLLECTION INOUT Type: COLLECTION, Direction: INOUT
COLLECTION OUT Type: COLLECTION, Direction: OUT

DICTIONARY(_IN) Type: DICTIONARY, Direction: IN
DICTIONARY IN DELETE Type: DICTIONARY, Direction: IN_DELETE
DICTIONARY INOUT Type: DICTIONARY, Direction: INOUT

COLLECTION FILE(IN)

Type:

COLLECTION (File), Direction: IN

COLLECTION FILE INOUT

Type:

COLLECTION (File), Direction: INOUT

COLLECTION FILE_ OUT

Type:

COLLECTION (File), Direction: OUT

FILE(_IN) STDIN

Type:

File, Direction:

IN, StdIOStream: STDIN

FILE(_IN) STDOUT

Type:

File, Direction:

IN, StdIOStream: STDOUT

FILE(_IN) STDERR

Type:

File, Direction:

IN, StdIOStream: STDERR

FILE OUT STDIN

Type:

File, Direction:

OUT, StdIOStream: STDIN

FILE OUT_STDOUT

Type:

File, Direction:

OUT, StdIOStream: STDOUT

FILE OUT STDERR

Type:

File, Direction:

OUT, StdIOStream: STDERR

FILE _INOUT_ STDIN

Type:

File, Direction:

INOUT, StdIOStream: STDIN

FILE INOUT STDOUT

Type:

File, Direction:

INOUT, StdIOStream: STDOUT

FILE INOUT STDERR

Type:

File, Direction:

INOUT, StdIOStream: STDERR

FILE CONCURRENT

Type:

File, Direction:

CONCURRENT

FILE CONCURRENT STDIN

Type:

File, Direction:

CONCURRENT, StdIOStream: STDIN

FILE CONCURRENT_STDOUT

Type:

File, Direction:

CONCURRENT, StdIOStream: STDOUT

FILE CONCURRENT STDERR

Type:

File, Direction:

CONCURRENT, StdIOStream: STDERR

FILE COMMUTATIVE

Type:

File, Direction:

COMMUTATIVE

FILE COMMUTATIVE STDIN

Type:

File, Direction:

COMMUTATIVE, StdIOStream: STDIN

FILE COMMUTATIVE STD- Type: File, Direction: COMMUTATIVE, StdIOStream: STDOUT
ourT
FILE COMMUTATIVE - Type: File, Direction: COMMUTATIVE, StdlOStream: STDERR

STDERR

These parameter keys, as well as the shortcuts, can be imported from the PyCOMPSs library:

from pycompss.api.parameter import *

4.2.1.7 Task Constraints

It is possible to define constraints for each task. To this end, the @constraint (or @Constraint) decorator followed
by the desired constraints needs to be placed ON TOP of the @Qtask decorator (Code 72).

Important:

Please note the the order of @constraint and @task decorators is important.

Code 72: Constrained task example

from pycompss.api.task import task

from pycompss.api.constraint import constraint
from pycompss.api.parameter import INOUT

Qconstraint (computing_units="4")
@task (c=INOUT)
def func(a, b, c):

c+=ax*b

92

Chapter 4. Application development

COMPSs Documentation, 2.9

This decorator enables the user to set the particular constraints for each task, such as the amount of Cores required
explicitly. Alternatively, it is also possible to indicate that the value of a constraint is specified in a environment
variable (Code 73). A full description of the supported constraints can be found in Table 14.

For example:

Code 73: Constrained task with environment variable example

from pycompss.api.task import task
from pycompss.api.constraint import constraint
from pycompss.api.parameter import INOUT

Oconstraint (computing_units="4",
app_software="numpy,scipy,gnuplot",
memory_size="$MIN_MEM_REQ")

Otask (c=INQUT)

def func(a, b, c):

c+=a*b

Or another example requesting a CPU core and a GPU (Code 74).

Code 74: CPU and GPU constrained task example

from pycompss.api.task import task
from pycompss.api.constraint import constraint

Qconstraint (processors=[{'processorType':'CPU', 'computingUnits':'1'},
{'processorType':'GPU', 'computingUnits':'1'}])

Otask(returns=1)

def func(a, b, c):

return result

When the task requests a GPU, COMPSs provides the information about the assigned GPU through the
COMPSS _BINDED GPUS, CUDA_VISIBLE DEVICES and GPU_DEVICE ORDINAL environment vari-
ables. This information can be gathered from the task code in order to use the GPU.

Please, take into account that in order to respect the constraints, the peculiarities of the infrastructure must be
defined in the resources.zml file.

4.2.1.8 Multiple Task Implementations

As in Java COMPSs applications, it is possible to define multiple implementations for each task. In particular, a
programmer can define a task for a particular purpose, and multiple implementations for that task with the same
objective, but with different constraints (e.g. specific libraries, hardware, etc). To this end, the @implement (or
@Implement) decorator followed with the specific implementations constraints (with the @constraint decorator, see
Section [subsubsec:constraints]) needs to be placed ON TOP of the @task decorator. Although the user only calls
the task that is not decorated with the @implement decorator, when the application is executed in a heterogeneous
distributed environment, the runtime will take into account the constraints on each implementation and will try
to invoke the implementation that fulfills the constraints within each resource, keeping this management invisible
to the user (Code 75).

Code 75: Multiple task implementations example

from pycompss.api.implement import implement

@implement (source_class="sourcemodule", method="main_func")
Q@constraint (app_software="numpy")

(continues on next page)

4.2. Python Binding 93

COMPSs Documentation, 2.9

(continued from previous page)

Otask(returns=list)

def myfunctionWithNumpy(listl, list2):
Operate with the lists using numpy
return resultlist

O@task(returns=1list)

def main_func(listl, list2):
Operate with the lists using built-int functions
return resultlist

Please, note that if the implementation is used to define a binary, OmpSs, MPI, COMPSs, multinode or reduction
task invocation (see Other task types), the @implement decorator must be always on top of the decorators stack,
followed by the Q@constraint decorator, then the @binary/@ompss/@mpi/@compss/@multinode decorator, and
finally, the @Qtask decorator in the lowest level.

4.2.1.9 API

PyCOMPSs provides an API for data synchronization and other functionalities, such as task group definition and
automatic function parameter synchronization (local decorator).

Synchronization

The main program of the application is a sequential code that contains calls to the selected tasks. In addition,
when synchronizing for task data from the main program, there exist six API functions that can be invoked:

compss_open(file _name, mode="r’) Similar to the Python open() call. It synchronizes for the last version
of file file_name and returns the file descriptor for that synchronized file. It can have an optional parameter
mode, which defaults to ’r’, containing the mode in which the file will be opened (the open modes are
analogous to those of Python open()).

compss _wait on_file(*file name) Synchronizes for the last version of the file/s specified by file_name.
Returns True if success (False otherwise).

compss_wait on_ directory(*directory name) Synchronizes for the last version of the directory/ies spec-
ified by directory name. Returns True if success (False otherwise).

compss_barrier(no_more tasks=False) Performs a explicit synchronization, but does not return any ob-
ject. The use of compss_ barrier() forces to wait for all tasks that have been submitted before the compss_ bar-
rier() is called. When all tasks submitted before the compss_barrier() have finished, the execution continues.
The no_more_ tasks is used to specify if no more tasks are going to be submitted after the compss_ barrier().

compss_barrier group(group name) Performs a explicit synchronization over the tasks that belong to the
group group name, but does not return any object. The use of compss_barrier group() forces to wait for
all tasks that belong to the given group submitted before the compss barrier group() is called. When all
group tasks submitted before the compss _barrier group() have finished, the execution continues. See Task
Groups for more information about task groups.

compss__wait _on(*obj, mode="r" | “rw”) Synchronizes for the last version of object/s specifed by obj and
returns the synchronized object. It can have an optional string parameter mode, which defaults to rw, that
indicates whether the main program will modify the returned object. It is possible to wait on a list of objects.
In this particular case, it will synchronize all future objects contained in the list recursively.

To illustrate the use of the aforementioned API functions, the following example (Code 76) first invokes a task
func that writes a file, which is later synchronized by calling compss _open(). Later in the program, an object of
class MyClass is created and a task method method that modifies the object is invoked on it; the object is then
synchronized with compss_wait _on, so that it can be used in the main program from that point on.

Then, a loop calls again ten times to func task. Afterwards, the compss_barrier() call performs a synchronization,
and the execution of the main user code will not continue until the ten func tasks have finished. This call does
not retrieve any information.

94 Chapter 4. Application development

COMPSs Documentation, 2.9

Code 76: PyCOMPSs Synchronization API functions usage

from pycompss.api.api import compss_open

from pycompss.api.api import compss_wait_on

from pycompss.api.api import compss_wait_on_file
from pycompss.api.api import compss_wait_on_directory
from pycompss.api.api import compss_barrier

if __name__=='__main__"':

my_file = 'file.txt'
func(my_file)

fd = compss_open(my_file)

my_file2 = 'file2.txt'
func(my_file2)
compss_wait_on_file(my_file2)

my_directory = '/tmp/data’
func_dir(my_directory)
compss_wait_on_directory(my_directory)

my_obj2 = MyClass()
my_obj2.method ()
my_obj2 = compss_wait_on(my_obj2)

for i in range(10):
func(str(i) + my_file)
compss_barrier()

The corresponding task definition for the example above would be (Code 77):

Code 77: PyCOMPSs Synchronization API usage tasks

@task (f=FILE_0OUT)
def func(f):

class MyClass(object):

@task()
def method(self):
self 1s modified here

Tip: It is possible to synchronize a list of objects. This is particularly useful when the programmer expect to
synchronize more than one elements (using the compss wait_on function) (Code 78). This feature also works
with dictionaries, where the value of each entry is synchronized. In addition, if the structure synchronized is a
combination of lists and dictionaries, the compss_wait_on will look for all objects to be synchronized in the whole
structure.

4.2. Python Binding 95

COMPSs Documentation, 2.9

Code 78: Synchronization of a list of objects

if name__=='__main__"':

1 is a list of objects where some/all of them may be future objects
1 =1
for i in range(10):

1.append(ret_func())

1 = compss_wait_on(1l)

Important: In order to make the COMPSs Python binding function correctly, the programmer
should not wuse relative imports in the code. Relative imports can lead to ambiguous code
and they are discouraged in Python, as explained in: http://docs.python.org/2/faq/programming.html#
what-are-the-best-practices-for-using-import-in-a-module

Local Decorator

Besides the synchronization API functions, the programmer has also a decorator for automatic function parameters
synchronization at his disposal. The @local decorator can be placed over functions that are not decorated as tasks,
but that may receive results from tasks (Code 79). In this case, the @local decorator synchronizes the necessary
parameters in order to continue with the function execution without the need of using explicitly the compss -
wait_on call for each parameter.

Code 79: @local decorator example

from pycompss.api.task import task

from pycompss.api.api import compss_wait_on
from pycompss.api.parameter import INOUT
from pycompss.api.local import local

Otask(returns=1list)

Q@task (v=INOUT)

def append_three_ones(v):
v += [1, 1, 1]

Q@local

def scale_vector(v, k):
return [k*x for x in v]

if __name__=='__main__"':

v = [1,2,3]

append_three_ones (v)

v 1s automatically synchronized when calling the scale_vector function.

w = scale_vector(v, 2)

96 Chapter 4. Application development

http://docs.python.org/2/faq/programming.html#what-are-the-best-practices-for-using-import-in-a-module
http://docs.python.org/2/faq/programming.html#what-are-the-best-practices-for-using-import-in-a-module

COMPSs Documentation, 2.9

File/Object deletion

PyCOMPSs also provides two functions within its API for object/file deletion. These calls allow the runtime to
clean the infrastructure explicitly, but the deletion of the objects/files will be performed as soon as the objects/files
dependencies are released.

compss_delete file(*file _name) Notifies the runtime to delete a file/s.
compss__delete object(*object) Notifies the runtime to delete all the associated files to a given object/s.

The following example (Code 80) illustrates the use of the aforementioned API functions.

Code 80: PyCOMPSs delete API functions usage

from pycompss.api.api import compss_delete_file
from pycompss.api.api import compss_delete_object
if __name__=='__main__"':

my_file = 'file.txt'

func(my_file)

compss_delete_file(my_file)

my_obj = MyClass()
my_obj.method ()
compss_delete_object (my_obj)

The corresponding task definition for the example above would be (Code 81):

Code 81: PyCOMPSs delete API usage tasks

@task (f=FILE_QOUT)
def func(f):

class MyClass(object):

@task()
def method(self):
self is modified here

Task Groups

COMPSs also enables to specify task groups. To this end, COMPSs provides the TaskGroup context (Code 82)
which can be tuned with the group name, and a second parameter (boolean) to perform an implicit barrier for the
whole group. Users can also define task groups within task groups.

TaskGroup(group name, implicit barrier=True) Python context to define a group of tasks. All tasks
submitted within the context will belong to group name context and are sensitive to wait for them while the
rest are being executed. Tasks groups are depicted within a box into the generated task dependency graph.

Code 82: PyCOMPSs Task group definiton

from pycompss.api.task import task
from pycompss.api.api import TaskGroup
from pycompss.api.api import compss_barrier_group

(continues on next page)

4.2. Python Binding 97

COMPSs Documentation, 2.9

(continued from previous page)

Otask()
def funci():

Otask()
def func2():

def test_taskgroup():

Creation of group

with TaskGroup('Groupl', False):

for i in range(NUM_TASKS):
func1()
func2()

compss_barrier_group('Groupl')

if __name__=='__main__":
test_taskgroup()
Other

PyCOMPSs also provides other function within its API to check if a file exists.

compss_file exists(*file _name) Checks if a file or files exist. If it does not exist, the function checks if the

file has been accessed before by calling the runtime.

Code 83 illustrates its usage.

Code 83: PyCOMPSs API file exists usage

from pycompss.api.api import compss_file_exists

if

_name__=='__main__":

my_file = 'file.txt'
func(my_file)
if compss_file_exists(my_file):
print ("Exists")
else:
print ("Not exists")

The corresponding task definition for the example above would be (Code 84):

98

Chapter 4. Application development

COMPSs Documentation, 2.9

Code 84: PyCOMPSs delete API usage tasks

Otask (f=FILE_QOUT)
def func(f):

API Summary

Finally, Table 11 summarizes the API functions to be used in the main program of a COMPSs Python application.

Table 11: COMPSs Python API functions

Type API Function Description
Synchroniza- compss_open(file_name, Synchronizes for the last version of a file and returns its
tion mode="r") file descriptor.
compss wait_on_file(*file - Synchronizes for the last version of the specified file/s.
name)
compss_wait on_direc- Synchronizes for the last version of the specified direc-
tory(*directory name) tory /ies.
compss_barrier(no_more - Wait for all tasks submitted before the barrier.
tasks=False)
compss_barrier _group(group _ - Wait for all tasks that belong to group name group sub-
name) mitted before the barrier.
compss_wait__on(*obj, mode="r" | Synchronizes for the last version of an object (or a list of
“rw”) objects) and returns it.
File/Object compss_delete_file(*file_name) Notifies the runtime to remove the given file/s.
deletion compss_delete _object(*object) Notifies the runtime to delete the associated file to the
object/s.
Task Groups TaskGroup(group name, im- | Context to define a group of tasks. implicit_ barrier forces
plicit barrier=True) waiting on context exit.
Other compss_file exists(*file name) Check if a file or files exist.

4.2.1.10 Failures and Exceptions

COMPSs is able to deal with failures and exceptions raised during the execution of the applications. In this case,
if a user/python defined exception happens, the user can choose the task behaviour using the on_ failure argument
within the @task decorator.

The possible values are:

‘RETRY’ (Default): The task is executed twice in the same worker and a different worker.
’CANCEL_SUCCESSORS?: All successors of this task are canceled.

’FAIL’: The task failure produces a failure of the whole application.

’IGNORE’: The task failure is ignored and the output parameters are set with empty values.

A part from failures, COMPSs can also manage blocked tasks executions. Users can use the time_out property in
the task definition to indicate the maximum duration of a task. If the task execution takes more seconds than the
specified in the property. The task will be considered failed. This property can be combined with the on_ failure
mechanism.

Code 85: Task failures example

from pycompss.api.task import task

Otask(time_out=60, on_failure='IGNORE')
def func(v):

4.2. Python Binding 99

COMPSs Documentation, 2.9

COMPSs provides an special exception (COMPSsException) that the user can raise when necessary and can be
catched in the main code for user defined behaviour management. Code 86 shows an example of COMPSsEzception
raising. In this case, the group definition is blocking, and waits for all task groups to finish. If a task of the group
raises a COMPSsEzception it will be captured by the runtime. It will react to it by canceling the running and
pending tasks of the group and raising the COMPSsException to enable the execution except clause. Consequenty,
the COMPSsFEzception must be combined with task groups.

In addition, the tasks which belong to the group will be affected by the on_ failure value defined in the @task
decorator.

Code 86: COMPSs Exception with task group example

from pycompss.api.task import task
from pycompss.api.exceptions import COMPSsException
from pycompss.api.api import TaskGroup

Otask()
def func(v):

if v ==
raise COMPSsException("8 found!")

if __name__=='__main__"':

try:
with TaskGroup('exceptionGroupl'):
for i in range(10):
func (i)
except COMPSsException:
React to the exception (maybe calling other tasks or with other parameters)

It is possible to use a non-blocking task group for asynchronous behaviour (see Code 87). In this case, the try-
except can be defined later in the code surrounding the compss barrier group, enabling to check exception from
the defined groups without retrieving data while other tasks are being executed.

Code 87: Asynchronous COMPSs Exception with task group ex-
ample

from pycompss.api.task import task
from pycompss.api.api import TaskGroup
from pycompss.api.api import compss_barrier_group

@task()
def func1():

@task()
def func2():

def test_taskgroup():
Creation of group
for i in range(10):
with TaskGroup('Group' + str(i), False):
for i in range(NUM_TASKS):
func1()
func2()

(continues on next page)

100 Chapter 4. Application development

COMPSs Documentation, 2.9

(continued from previous page)

for i in range(10):
try:
compss_barrier_group('Group' + str(i))
except COMPSsException:
React to the exception (maybe calling other tasks or with other parameters)

if __name__=='__main__"':

test_taskgroup()

4.2.2 Application Execution

The next subsections describe how to execute applications with the COMPSs Python binding.

4.2.2.1 Environment

The following environment variables must be defined before executing a COMPSs Python application:
JAVA HOME Java JDK installation directory (e.g. /usr/lib/jvm/java-8-openjdk/)

4.2.2.2 Command

In order to run a Python application with COMPSs, the runcompss script can be used, like for Java and C/C++
applications. An example of an invocation of the script is:

compss@bsc:~$ runcompss \
--lang=python \
--pythonpath=$TEST_DIR \
$TEST_DIR/application.py argl arg2

Or alternatively, use the pycompss module:

compss@bsc:~$ python -m pycompss \
--pythonpath=$TEST_DIR \
$TEST_DIR/application.py argl arg2

Tip: The runcompss command is able to detect the application language. Consequently, the --lang=python is
not mandatory.

Tip: The --pythonpath flag enables the user to add directories to the PYTHONPATH environment variable and
export them into the workers, so that the tasks can resolve successfully its imports.

Tip: PyCOMPSs applications can also be launched without parallelization (as a common python script) by
avoiding the -m pycompss and its flags when using python:

compss@bsc:~$ python $TEST_DIR/application.py argl arg?2

The main limitation is that the application must only contain @task, @binary and/or @mpi decorators and Py-
COMPSs needs to be installed.

4.2. Python Binding 101

COMPSs Documentation, 2.9

For full description about the options available for the runcompss command please check the Executing COMPSs
applications Section.

4.2.3 Integration with Jupyter notebook

PyCOMPSs can also be used within Jupyter notebooks. This feature allows users to develop and run their
PyCOMPSs applications in a Jupyter notebook, where it is possible to modify the code during the execution and
experience an interactive behaviour.

4.2.3.1 Environment Variables

The following libraries must be present in the appropiate environment variables in order to enable PyCOMPSs
within Jupyter notebook:

PYTHONPATH The path where PyCOMPSs is installed (e.g. /opt/COMPSs/Bindings/python/). Please, note
that the path contains the folder 2 and/or 3. This is due to the fact that PyCOMPSs is able to choose the
appropiate one depending on the kernel used with jupyter.

LD LIBRARY PATH The path where the libbindings-commons.so library is located (e.g. <COMPSS_-
INSTALLATION_PATH>/Bindings/bindings-common/1ib/) and the path where the 1ibjvm.so library is lo-
cated (e.g. /usr/lib/jvm/java-8-openjdk/jre/lib/amd64/server/).

4.2.3.2 API calls

In this case, the user is responsible of starting and stopping the COMPSs runtime during the jupyter notebook
execution. To this end, PyCOMPSs provides a module with two main API calls: one for starting the COMPSs
runtime, and another for stopping it.

This module can be imported from the pycompss library:

import pycompss.interactive as ipycompss

And contains two main functions: start and stop. These functions can then be invoked as follows for the COMPSs
runtime deployment with default parameters:

Previous user code/cells

import pycompss.interactive as ipycompss
ipycompss.start ()

User code/cells that can benefit from PyCOMPSs

ipycompss.stop()

Subsequent code/cells

Between the start and stop function calls, the user can write its own python code including PyCOMPSs imports,
decorators and synchronization calls described in the Programming Model Section. The code can be splitted into
multiple cells.

The start and stop functions accept parameters in order to customize the COMPSs runtime (such as the flags
that can be selected with the runcompss command). Table 12 summarizes the accepted parameters of the start
function. Table 13 summarizes the accepted parameters of the stop function.

Parameter Name Parameter Type | Description

log level String Log level Options: "off", "info" and "debug". (Default: "off")

102 Chapter 4. Application development

COMPSs Documentation, 2.9

Parameter Name Parameter Type | Description

debug Boolean COMPSs runtime debug (Default: False) (overrides log level)

o_c Boolean Object conversion to string when possible (Default: False)

graph Boolean Task dependency graph generation (Default: False)

trace Boolean Paraver trace generation (Default: False)

monitor Integer Monitor refresh rate (Default: None - Monitoring disabled)

project xml String Path to the project XML file (Default: "$COMPSS/Runtime/configur:
resources_xml String Path to the resources XML file (Default: "$COMPSs/Runtime/configt
summary Boolean Show summary at the end of the execution (Default: False)

storage impl String Path to an storage implementation (Default: None)

storage conf String Storage configuration file path (Default: None)

task count Integer Number of task definitions (Default: 50)

app_name String Application name (Default: "Interactive")

uuid String Application uuid (Default: None - Will be random)

base log dir String Base directory to store COMPSs log files (a .COMPSs/ folder will be
specific_log dir String Use a specific directory to store COMPSs log files (the folder MUST e
extrae cfg String Sets a custom extrae config file. Must be in a shared disk between all
comm String Class that implements the adaptor for communications. Supported ad
conn String Class that implements the runtime connector for the cloud. Supportec
master _name String Hostname of the node to run the COMPSs master (Default: "")
master port String Port to run the COMPSs master communications (Only for NIO adap
scheduler String Class that implements the Scheduler for COMPSs. Supported schedul
jvm_ workers String Extra options for the COMPSs Workers JVMs. Each option separed 1
cpu_ affinity String Sets the CPU affinity for the workers. Supported options: "disabled!
gpu_ affinity String Sets the GPU affinity for the workers. Supported options: "disabled
profile input String Path to the file which stores the input application profile (Default: ""
profile output String Path to the file to store the application profile at the end of the execu
scheduler config String Path to the file which contains the scheduler configuration (Default: "
external adaptation Boolean Enable external adaptation (this option will disable the Resource Opt
propatage virtual environment | Boolean Propagate the master virtual environment to the workers (Default: Fa
verbose Boolean Verbose mode (Default: False)

Table 13: PyCOMPSs stop function for Jupyter notebook

Parameter Name

Parameter Type

Description

sync Boolean

Synchronize the objects left on the user scope. (Default: False)

The following code snippet shows how to start a COMPSs runtime with tracing and graph generation enabled (with
trace and graph parameters), as well as enabling the monitor with a refresh rate of 2 seconds (with the monitor
parameter). It also synchronizes all remaining objects in the scope with the sync parameter when invoking the

stop function.

Previous user code

import pycompss.interactive as ipycompss

ipycompss.start (graph=True, trace=True, monitor=2000)

User code that can benefit from PyCOMPSs

ipycompss.stop(sync=True)

Subsequent code

4.2. Python Binding

103

COMPSs Documentation, 2.9

Attention: Once the COMPSs runtime has been stopped it, the value of the variables that have not been
synchronized will be lost.

4.2.3.3 Notebook execution

The application can be executed as a common Jupyter notebook by steps or the whole application.

Important: A message showing the failed task/s will pop up if an exception within them happens.

This pop up message will also allow you to continue the execution without PyCOMPSs, or to restart the COMPSs
runtime. Please, note that in the case of COMPSs restart, the tracking of some objects may be lost (will need to
be recomputed).

More information on the Notebook execution can be found in the Execution Environments Jupyter Notebook
Section.

4.2.3.4 Notebook example

Sample notebooks can be found in the PyCOMPSs Notebooks Section.

4.2.4 Integration with Numba
PyCOMPSs can also be used with Numba. Numba (http://numba.pydata.org/) is an Open Source JIT compiler for

Python which provides a set of decorators and functionalities to translate Python functions to optimized machine
code.

4.2.4.1 Basic usage

PyCOMPSs’ tasks can be decorated with Numba’s @jit/@njit decorator (with the appropiate parameters) just
below the @task decorator in order to apply Numba to the task.

from pycompss.api.task import task # Import @task decorator
from numba import jit

Otask(returns=1)
@jit()
def numba_func(a, b):

The task will be optimized by Numba within the worker node, enabling COMPSs to use the most efficient imple-
mentation of the task (and exploiting the compilation cache — any task that has already been compiled does not
need to be recompiled in subsequent invocations).

104 Chapter 4. Application development

http://numba.pydata.org/

COMPSs Documentation, 2.9

4.2.4.2 Advanced usage

PyCOMPSs can be also used in conjuntion with the Numba’s @vectorize, @guvectorize, @stencil and @cfunc.
But since these decorators do not preserve the original argument specification of the original function, their usage
is done through the numba parameter withih the @task decorator. The numba parameter accepts:

e Boolean: True: Applies jit to the function.
e Dictionary{k, v}: Applies jit with the dictionary parameters to the function (allows to specify specific jit
parameters (e.g. nopython=True)).
e String:
— "jit": Applies jit to the function.
— "njit": Applies jit with nopython="True to the function.
— "generated_jit": Applies generated jit to the function.
— "vectorize": Applies vectorize to the function. Needs some extra flags in the @task decorator:
* numba_ signature: String with the vectorize signature.
— "guvectorize": Applies guvectorize to the function. Needs some extra flags in the @task decorator:
x numba_ signature: String with the guvectorize signature.
x numba_ declaration: String with the guvectorize declaration.
— "stencil": Applies stencil to the function.
— "cfunc": Applies cfunc to the function. Needs some extra flags in the @task decorator:
x numba_ signature: String with the cfunc signature.

Moreover, the @task decorator also allows to define specific flags for the jit, njit, generated_ jit, vectorize, guvectorize
and cfunc functionalities with the numba_ flags hint. This hint is used to declare a dictionary with the flags expected
to use with these numba functionalities. The default flag included by PyCOMPSs is the cache=True in order to
exploit the function caching of Numba across tasks.

For example, to apply Numba jit to a task:

from pycompss.api.task import task

Otask(numba='jit') # Aternatively: @task(numba=True)
def jit_func(a, b):

And if the developer wants to use specific flags with jit (e.g. parallel=True), the numba_flags must be defined
with a dictionary where the key is the numba flag name, and the value, the numba flag value to use):

from pycompss.api.task import task

Otask(numba='jit', numba_flags={'parallel':True})
def jit_func(a, b):

Other Numba’s functionalities require the specification of the function signature and declaration. In the next
example a task that will use the vectorize with three parameters and a specific flag to target the CPU is shown:

from pycompss.api.task import task

Otask(returns=1,
numba='vectorize',
numba_signature=['float32(float32, float32, float32)'],
numba_flags={'target':'cpu'})
def vectorize_task(a, b, c):
return a * b * c

4.2. Python Binding 105

COMPSs Documentation, 2.9

Using Numba with GPUs

In addition, Numba is also able to optimize python code for GPUs that can be used within PyCOMPSs’ tasks.
Task using Numba and a GPU shows an example where the calculate_wight task has a constraint of one CPU
and one GPU. This task first transfers the necessary data to the GPU using Numba’s cuda module, then invokes
the calculate_weight_cuda function (that is decorated with the Numba’s @vectorize decorator defining its
signature and the target specifically for GPU). When the execution in the GPU of the calculate_weight_cuda
finishes, the result is transfered to the cpu with the copy_to_host function and the task result is returned.

Code 88: Task using Numba and a GPU

from pycompss.api.constraint import constraint
from pycompss.api.task import task

from pycompss.api.parameter import *

from numba import vectorize

from numba import cuda

Qconstraint (processors=[{'ProcessorType':'CPU', 'ComputingUnits':'1'},
{'ProcessorType':'GPU', 'ComputingUnits':'1'}])

Otask(returns=1)
def calculate_weight(min_depth, max_depth, e3t, depth, mask):

Transfer data to the GPU

gpu_mask = cuda.to_device(mask.data.astype(np.float32))

gpu_e3t = cuda.to_device(e3t.data.astype(np.float32))

gpu_depth = cuda.to_device(depth.data.astype(np.float32))

Invoke function compiled with Numba for GPU

weight = calculate_weight_cuda(min_depth, max_depth,

gpu_e3t, gpu_depth, gpu_mask)

Tranfer result from GPU

local_weight = weight.copy_to_host()

return local_weight

@vectorize(['float32(int32, int32, float32, float32, float32)'], target='cuda')
def calculate_weight_cuda(min_depth, max_depth, e3t, depth, mask):

nnn

This code is comptiled with Numba for GPU (cuda)
wnn
if not mask:
return O
top = depth
bottom = top + e3t
if bottom < min_depth or top > max_depth:
return O
else:
if top < min_depth:
top = min_depth
if bottom > max_depth:
bottom = max_depth

return (bottom - top) * 1020 * 4000

Important: The function compiled with Numba for GPU can not be a task since the step to transfer the data
to the GPU and backwards needs to be explicitly performed by the user.

For this reason, the appropiate structure is composed by a task that has the necessary constraints, deals with the
data movements and invokes the function compiled with Numba for GPU.

106 Chapter 4. Application development

COMPSs Documentation, 2.9

The main application can then invoke the task.

More details about Numba and the specification of the signature, declaration and flags can be found in the Numba’s
webpage (http://numba.pydata.org/).

4.3 C/C++ Binding

COMPSs provides a binding for C and C-++ applications. The new C+-+ version in the current release comes with
support for objects as task parameters and the use of class methods as tasks.

4.3.1 Programming Model
As in Java, the application code is divided in 3 parts: the Task definition interface, the main code and task
implementations. These files must have the following notation,: <app ame>.idl, for the interface file, <app -

name>.cc for the main code and <app name>-functions.cc for task implementations. Next paragraphs provide
an example of how to define this files for matrix multiplication parallelised by blocks.

Task Definition Interface

As in Java the user has to provide a task selection by means of an interface. In this case the interface file has the
same name as the main application file plus the suffix “idl”, i.e. Matmul.idl, where the main file is called Matmul.cc.

Code 89: Matmul.idl

interface Matmul
{
// C functions
void initMatrix(inout Matrix matrix,
in int mSize,
in int nSize,
in double val);

void multiplyBlocks(inout Block blockl,
inout Block block2,
inout Block block3);
};

The syntax of the interface file is shown in the previous code. Tasks can be declared as classic C function prototypes,
this allow to keep the compatibility with standard C applications. In the example, initMatrix and multiplyBlocks
are functions declared using its prototype, like in a C header file, but this code is C++ as they have objects as
parameters (objects of type Matrix, or Block).

The grammar for the interface file is:

["static"] return-type task-name (parameter {, parameter }*);
return-type = "void" | type
ask-name = <qualified name of the function or method>

parameter = direction type parameter-name

direction "in" | "out" | "inout"

type = "char" | "int" | "short" | "long" | "float" | "double" | "boolean" |

(continues on next page)

4.3. C/C++ Binding 107

http://numba.pydata.org/

COMPSs Documentation, 2.9

(continued from previous page)

"char[<size>]" | "int[<size>]" | "short[<size>]" | "long[<size>]" |
"float[<size>]" | "double[<size>]" | "string" | "File" | class-name

class-name = <qualified name of the class>

Main Program
The following code shows an example of matrix multiplication written in C++.

Code 90: Matrix multiplication

#ainclude "Matmul.h"
#anclude "Matriz.h"
#1include "Block.h'"
int N; //MSIZE
int M; //BSIZE
double val;
int main(int argc, char **argv)
{
Matrix A;
Matrix B;
Matrix C;

N = atoi(argv[i]);
M = atoi(argv[2]);
val = atof(argv[3]);

compss_on();
A = Matrix::init(N,M,val);

initMatrix(&B,N,M,val);
initMatrix(&C,N,M,0.0);

cout << "Waiting for initialization...\n";

compss_wait_on(B);
compss_wait_on(C);

cout << "Initialization ends...\n";
C.multiply(A, B);

compss_off () ;
return 0;

The developer has to take into account the following rules:

1. A header file with the same name as the main file must be included, in this case Matmul.h. This header

file is automatically generated by the binding and it contains other includes and type-definitions that are

required.

A call to the compss _on binding function is required to turn on the COMPSs runtime.

3. Asin C language, out or inout parameters should be passed by reference by means of the “&” operator before
the parameter name.

4. Synchronization on a parameter can be done calling the compss _wait on binding function. The argument

o

108 Chapter 4. Application development

COMPSs Documentation, 2.9

of this function must be the variable or object we want to synchronize.

5. There is an implicit synchronization in the init method of Matrix. It is not possible to know the address
of “A” before exiting the method call and due to this it is necessary to synchronize before for the copy of the
returned value into “A” for it to be correct.

6. A call to the compss _off binding function is required to turn off the COMPSs runtime.

Functions file

The implementation of the tasks in a C or C++ program has to be provided in a functions file. Its name must be
the same as the main file followed by the suffix “-functions”. In our case Matmul-functions.cc.

#include "Matmul.h"
#include "Matrixz.h"
#include "Block.h'"

void initMatrix(Matrix *matrix,int mSize,int nSize,double val){
*matrix = Matrix::init(mSize, nSize, wval);

}

void multiplyBlocks(Block *blockl,Block *block2,Block *block3){
blockl->multiply(*¥block2, *block3);
}

In the previous code, class methods have been encapsulated inside a function. This is useful when the class method
returns an object or a value and we want to avoid the explicit synchronization when returning from the method.

Additional source files

Other source files needed by the user application must be placed under the directory “src”. In this directory
the programmer must provide a Makefile that compiles such source files in the proper way. When the binding
compiles the whole application it will enter into the src directory and execute the Makefile.

It generates two libraries, one for the master application and another for the worker application. The directive
COMPSS MASTER or COMPSS WORKER must be used in order to compile the source files for each type of
library. Both libraries will be copied into the lib directory where the binding will look for them when generating
the master and worker applications.

The following sections provide a more detailed view of the C+-+ Binding. It will include the available APT calls,
how to deal with objects and having tasks as method objects as well as how to define constraints and task versions.

4.3.1.1 Binding API

Besides the aforementioned compss on, compss off and compss wait on functions, the C/C++ main
program can make use of a variety of other API calls to better manage the synchronization of data generated by
tasks. These calls are as follows:

void compss__ifstream(char * filename, ifstream™ & * ifs) Given an uninitialized input stream ifs and a
file filename, this function will synchronize the content of the file and initialize ifs to read from it.

void compss_ofstream(char * filename, ofstream™ & * ofs) Behaves the same way as compss_ ifstream,
but in this case the opened stream is an output stream, meaning it will be used to write to the file.

FILE* compss_fopen(char * file name, char * mode) Similar to the C/C++ fopen call. Synchronizes
with the last version of file file name and returns the FILE* pointer to further reference it. As the mode
parameter it takes the same that can be used in fopen (r, w, a, r+, w+ and a+).

void compss _wait _on(T** & * obj) or T compss_wait _on(T* & * obj) Synchronizes for the last ver-
sion of object obj, meaning that the execution will stop until the value of obj up to that point of the code is
received (and thus all tasks that can modify it have ended).

void compss _delete file(char * file name) Makes an asynchronous delete of file filename. When all previ-
ous tasks have finished updating the file, it is deleted.

4.3. C/C++ Binding 109

COMPSs Documentation, 2.9

void compss delete object(T** & * obj) Makes an asynchronous delete of an object. When all previous
tasks have finished updating the object, it is deleted.

void compss_barrier() Similarly to the Python binding, performs an explicit synchronization without a return.
When a compss_ barrier is encountered, the execution will not continue until all the tasks submitted before
the compss_ barrier have finished.

4.3.1.2 Functions file

The implementation of the tasks in a C or C++ program has to be provided in a functions file. Its name must be
the same as the main file followed by the suffix “-functions”. In our case Matmul-functions.cc.

#include "Matmul.h"
#include "Matrixz.h"
#include "Block.h'"

void initMatrix(Matrix *matrix,int mSize,int nSize,double val){
*matrix = Matrix::init(mSize, nSize, wval);

}

void multiplyBlocks(Block *blockl,Block *block2,Block *block3){
blockl->multiply(*¥block2, *block3);
}

In the previous code, class methods have been encapsulated inside a function. This is useful when the class method
returns an object or a value and we want to avoid the explicit synchronization when returning from the method.

4.3.1.3 Additional source files

Other source files needed by the user application must be placed under the directory “src”. In this directory
the programmer must provide a Makefile that compiles such source files in the proper way. When the binding
compiles the whole application it will enter into the src directory and execute the Makefile.

It generates two libraries, one for the master application and another for the worker application. The directive
COMPSS MASTER or COMPSS WORKER must be used in order to compile the source files for each type of
library. Both libraries will be copied into the lib directory where the binding will look for them when generating
the master and worker applications.

4.3.1.4 Class Serialization

In case of using an object as method parameter, as callee or as return of a call to a function, the object has to be
serialized. The serialization method has to be provided inline in the header file of the object’s class by means of
the “boost” library. The next listing contains an example of serialization for two objects of the Block class.

#ifndef BLOCK_H
#define BLOCK_H

#include <vector>

#include <boost/archive/text_iarchive.hpp>
#include <boost/archive/text_oarchive.hpp>
#include <boost/serialization/serialization.hpp>
#include <boost/serialization/access.hpp>
#include <boost/serialization/vector.hpp>

using namespace std;
using namespace boost;
using namespace serialization;

(continues on next page)

110 Chapter 4. Application development

COMPSs Documentation, 2.9

(continued from previous page)

class Block {

public:
Block () {};
Block(int bSize);
static Block #*init(int bSize, double initVal);
void multiply(Block blockl, Block block2);
void print();

private:
int M;
std: :vector< std::vector< double > > data;

friend class::serialization::access;
template<class Archive>
void serialize(Archive & ar, const unsigned int version) {
ar & M;
ar & data;
+
I
#endrf

For more information about serialization using “boost” visit the related documentation at www.boost.org
<www.boost.org>.

4.3.1.5 Method - Task

A task can be a C++ class method. A method can return a value, modify the this object, or modify a parameter.

If the method has a return value there will be an implicit synchronization before exit the method, but for the this
object and parameters the synchronization can be done later after the method has finished.

This is because the this object and the parameters can be accessed inside and outside the method, but for the
variable where the returned value is copied to, it can’t be known inside the method.

#1include "Block.h"

Block: :Block(int bSize) {
M = bSize;
data.resize(M);
for (int i=0; i<M; i++) {
datal[i] .resize(M);
}
}

Block #*Block::init(int bSize, double initVal) {
Block #*block = new Block(bSize);
for (int i=0; i<bSize; i++) {
for (int j=0; j<bSize; j++) {
block->datal[i] [j] = initVal;
}
}

return block;

#1ifdef COMPSS_WORKER

(continues on next page)

4.3. C/C++ Binding 111

COMPSs Documentation, 2.9

(continued from previous page)

void Block: :multiply(Block blockl, Block block2) {
for (int i=0; i<M; i++) {
for (int j=0; j<M; j++) {
for (int k=0; k<M; k++) {
datal[i] [j] += blockl.data[i] [k] * block2.datalk] [j];
}
}
}
this->print();

#endif

void Block: :print() {
for (int i=0; i<M; i++) {
for (int j=0; j<M; j++) {
cout << datali][j] << " ";
}

cout << "\r\n";

4.3.1.6 Task Constraints

The C/C++ binding also supports the definition of task constraints. The task definition specified in the IDL
file must be decorated/annotated with the @Constraints. Below, you can find and example of how to define a
task with a constraint of using 4 cores. The list of constraints which can be defined for a task can be found in
Section [sec:Constraints|

interface Matmul

{
@Constraints(ComputingUnits = 4)
void multiplyBlocks(inout Block blockl,
in Block block2,
in Block block3);
3

4.3.1.7 Task Versions

Another COMPSs functionality supported in the C/C++ binding is the definition of different versions for a
tasks. The following code shows an IDL file where a function has two implementations, with their corresponding
constraints. It show an example where the multiplyBlocks GPU is defined as a implementation of multiplyBlocks
using the annotation/decoration @Implements. It also shows how to set a processor constraint which requires a
GPU processor and a CPU core for managing the offloading of the computation to the GPU.

interface Matmul
{
@Constraints(ComputingUnits=4) ;
void multiplyBlocks(inout Block blockil,
in Block block2,
in Block block3);

(continues on next page)

112 Chapter 4. Application development

COMPSs Documentation, 2.9

(continued from previous page)

// GPU implementation
@Constraints(processors={
Q@Processor (ProcessorType=CPU, ComputingUnits=1)});
@Processor (ProcessorType=GPU, ComputingUnits=1)});
@Implements (multiplyBlocks) ;
void multiplyBlocks_GPU(inout Block blockil,
in Block block2,
in Block block3);

};

4.3.2 Use of programming models inside tasks

To improve COMPSs performance in some cases, C/C++ binding offers the possibility to use programming models
inside tasks. This feature allows the user to exploit the potential parallelism in their application’s tasks.

4.3.2.1 OmpSs

COMPSs C/C++ binding supports the use of the programming model OmpSs. To use OmpSs inside COMPSs tasks
we have to annotate the implemented tasks. The implementation of tasks was described in section [sec:functionsfile].
The following code shows a COMPSs C/C++ task without the use of OmpSs.

void compss_task(int* a, int N) {

int 1i;

for (i = 0; 1 < N; ++1i) {
alil = 1i;

}

}

This code will assign to every array element its position in it. A possible use of OmpSs is the following.

void compss_task(int* a, int N) {
int 1i;
for (i = 0; i < N; ++i) {
#pragma omp task
{
ali] = i;
¥
}
}

This will result in the parallelization of the array initialization, of course this can be applied to more complex
implementations and the directives offered by OmpSs are much more. You can find the documentation and
specification in https://pm.bsc.es/ompss.

There’s also the possibility to use a newer version of the OmpSs programming model which introduces significant
improvements, OmpSs-2. The changes at user level are minimal, the following image shows the array initialization
using OmpSs-2.

void compss_task(int* a, int N) {
int i;

for (i = 0; i < N; ++i) {
#pragma oss task

{

(continues on next page)

4.3. C/C++ Binding 113

https://pm.bsc.es/ompss

COMPSs Documentation, 2.9

(continued from previous page)

ali] = i;

Documentation and specification of OmpSs-2 can be found in https://pm.bsc.es/ompss-2.

4.3.3 Application Compilation

To compile user’s applications with the C/C++ binding two commands are used: The “compss build app’
command allows to compile applications for a single architecture, and the “compss _build _app multi arch”
command for multiple architectures. Both commands must be executed in the directory of the main application
code.

4.3.3.1 Single architecture

The user command “compss__build _app” compiles both master and worker for a single architecture (e.g. x86-64,
armhf, etc). Thus, whether you want to run your application in Intel based machine or ARM based machine, this
command is the tool you need.

When the target is the native architecture, the command to execute is very simple;

$~/matmul _objects> compss_build_app Matmul

[INFO] Java libraries are searched in the directory: /usr/lib/jvm/java-1.8.0-openjdk-amd64//
—jre/lib/amd64/server

[INFO] Boost libraries are searched in the directory: /usr/lib/

[Info] The target host is: x86_64-linux-gnu

Building application for master...

g++ -g -03 -I. -I/Bindings/c/share/c_build/worker/files/ -c Block.cc Matrix.cc
ar rvs libmaster.a Block.o Matrix.o

ranlib libmaster.a

Building application for workers...

g++ -DCOMPSS_WORKER -g -03 -I. -I/Bindings/c/share/c_build/worker/files/ -c Block.cc -o Block.
-0

g++ -DCOMPSS_WORKER -g -03 -I. -I/Bindings/c/share/c_build/worker/files/ -c Matrix.cc -oy
—Matrix.o

ar rvs libworker.a Block.o Matrix.o

ranlib libworker.a

Command successful.

In order to build an application for a different architecture e.g. armhf, an environment must be provided, indicating
the compiler used to cross-compile, and also the location of some COMPSs dependencies such as java or boost
which must be compliant with the target architecture. This environment is passed by flags and arguments;

Please note that to use cross compilation features and multiple architecture builds, you need to do the proper
installation of COMPSs, find more information in the builders README.

114 Chapter 4. Application development

https://pm.bsc.es/ompss-2

COMPSs Documentation, 2.9

$~/matmul _objects> compss_build_app --cross-compile --cross-compile-prefix=arm-linux-
—gnueabihf- --java_home=/usr/lib/jvm/java-1.8.0-openjdk-armhf Matmul

[INFO] Java libraries are searched in the directory: /usr/lib/jvm/java-1.8.0-openjdk-armhf/
—jre/lib/arm/server

[INFO] Boost libraries are searched in the directory: /usr/lib/

[INFO] You enabled cross-compile and the prefix to be used is: arm-linux-gnueabihf-

[INFO] The target host is: arm-linux-gnueabihf

Building application for master...

g++ -g -03 -I. -I/Bindings/c/share/c_build/worker/files/ -c Block.cc Matrix.cc
ar rvs libmaster.a Block.o Matrix.o

ranlib libmaster.a

Building application for workers...

g++ -DCOMPSS_WORKER -g -03 -I. -I/Bindings/c/share/c_build/worker/files/ -c Block.cc -o Block.
-0

g++ -DCOMPSS_WORKER -g -03 -I. -I/Bindings/c/share/c_build/worker/files/ -c Matrix.cc -oy
—Matrix.o

ar rvs libworker.a Block.o Matrix.o

ranlib libworker.a

Command successful.

[The previous outputs have been cut for simplicity]

The —cross-compile flag is used to indicate the users desire to cross-compile the application. It enables the use of
—cross-compile-prefix flag to define the prefix for the cross-compiler. Setting $CROSS COMPILE environment
variable will also work (in case you use the environment variable, the prefix passed by arguments is overrided
with the variable value). This prefix is added to §CC and $CXX to be used by the user Makefile and lastly
by the GNU toolchain . Regarding java and boost, —java home and —boostlib flags are used respectively. In
this case, users can also use teh $JAVA HOME and $BOOST LIB variables to indicate the java and boost for
the target architecture. Note that these last arguments are purely for linkage, where $LD LIBRARY PATH is
used by Uniz/Linuz systems to find libraries, so feel free to use it if you want to avoid passing some environment
arguments.

4.3.3.2 Multiple architectures

The user command “compss _build app multi arch” allows a to compile an application for several archi-
tectures. Users are able to compile both master and worker for one or more architectures. Environments for the
target architectures are defined in a file specified by *c*fg flag. Imagine you wish to build your application to
run the master in your Intel-based machine and the worker also in your native machine and in an ARM-based
machine, without this command you would have to execute several times the command for a single architecture
using its cross compile features. With the multiple architecture command is done in the following way.

$~/matmul _objects> compss_build_app_multi_arch --master=x86_64-linux-gnu --worker=arm-linux-
—gnueabihf ,x86_64-1linux-gnu Matmul

[INFO] Using default configuration file: /opt/COMPSs/Bindings/c/cfgs/compssrc.

[INFO] Java libraries are searched in the directory: /usr/lib/jvm/java-1.8.0-openjdk-amd64/
—jre/lib/amd64/server

[INFO] Boost libraries are searched in the directory: /usr/lib/

(continues on next page)

4.3. C/C++ Binding 115

COMPSs Documentation, 2.9

(continued from previous page)

Building application for master...

gt+ -g -03 -I. -I/Bindings/c/share/c_build/worker/files/ -c Block.cc Matrix.cc
ar rvs libmaster.a Block.o Matrix.o

ranlib libmaster.a

Building application for workers...

g++ -DCOMPSS_WORKER -g -03 -I. -I/Bindings/c/share/c_build/worker/files/ -c Block.cc -o Block.
=0

g++ -DCOMPSS_WORKER -g -03 -I. -I/Bindings/c/share/c_build/worker/files/ -c Matrix.cc -o
—Matrix.o

ar rvs libworker.a Block.o Matrix.o

ranlib libworker.a

Command successful. # The master for x86_64-linux-gnu compiled successfuly

[INFO] Java libraries are searched in the directory: /usr/lib/jvm/java-1.8.0-openjdk-armhf/
—jre/lib/arm/server
[INFO] Boost libraries are searched in the directory: /opt/install-arm/libboost

Building application for master...

arm-linux-gnueabihf-g++ -g -03 -I. -I/Bindings/c/share/c_build/worker/files/ -c Block.cc
—Matrix.cc

ar rvs libmaster.a Block.o Matrix.o

ranlib libmaster.a

Building application for workers...

arm-linux-gnueabihf-g++ -DCOMPSS_WORKER -g -03 -I. -I/Bindings/c/share/c_build/worker/files/ -
—C Block.cc -o Block.o

arm-linux-gnueabihf-g++ -DCOMPSS_WORKER -g -03 -I. -I/Bindings/c/share/c_build/worker/files/ -
—C Matrix.cc -o Matrix.o

ar rvs libworker.a Block.o Matrix.o

ranlib libworker.a

Command successful. # The worker for arm-linux-gnueabihf compiled successfuly

[INFO] Java libraries are searched in the directory: /usr/lib/jvm/java-1.8.0-openjdk-amd64/
—jre/lib/amd64/server
[INFO] Boost libraries are searched in the directory: /usr/lib/

Building application for master...
g+t+ -g -03 -I. -I/Bindings/c/share/c_build/worker/files/ -c Block.cc Matrix.cc
ar rvs libmaster.a Block.o Matrix.o

(continues on next page)

116 Chapter 4. Application development

COMPSs Documentation, 2.9

(continued from previous page)

ranlib libmaster.a

Building application for workers...

g++ -DCOMPSS_WORKER -g -03 -I. -I/Bindings/c/share/c_build/worker/files/ -c Block.cc -o Block.
-0

g++ -DCOMPSS_WORKER -g -03 -I. -I/Bindings/c/share/c_build/worker/files/ -c Matrix.cc -oy
—Matrix.o

ar rvs libworker.a Block.o Matrix.o

ranlib libworker.a

Command successful. # The worker for x86_64-linux-gnu compiled successfuly

[The previous output has been cut for simplicity/

Building for single architectures would lead to a directory structure quite different than the one obtained using
the script for multiple architectures. In the single architecture case, only one master and one worker directories
are expected. In the multiple architectures case, one master and one worker is expected per architecture.

| -- arm-linux-gnueabihf

| T -- worker

| -~ gsbuild

| “-- automédte.cache

|-- src

| -- x86_64-1linux-gnu

| | -- master

| | “-- gsbuild

| | “-- autométe.cache
| *-- worker

I -~ gsbuild

| “-- autométe.cache
T-- xml

(Note than only directories are shown).

4.3.3.3 Using OmpSs

As described in section [sec:ompss| applications can use OmpSs and OmpSs-2 programming models. The compila-
tion process differs a little bit compared with a normal COMPSs C/C-++ application. Applications using OmpSs
must be compiled using the --ompss option in the compss build _app command.

$~/matmul_objects> compss_build_app --ompss Matmul

Executing the previous command will start the compilation of the application. Sometimes due to configuration
issues OmpSs can not be found, the option --with_ompss=/path/to/ompss specifies the OmpSs path that the
user wants to use in the compilation.

Applications using OmpSs-2 are similarly compiled. The options to compile with OmpSs-2 are --ompss-2 and
--with_ompss-2=/path/to/ompss-2

$~/matmul_objects> compss_build_app --with_ompss-2=/home/mdomingu/ompss-2 --ompss-2 Matmul

Remember that additional source files can be used in COMPSs C/C++ applications, if the user expects OmpSs or
OmpSs-2 to be used in those files she, must be sure that the files are properly compiled with OmpSs or OmpSs-2.

4.3. C/C++ Binding 117

COMPSs Documentation, 2.9

4.3.4 Application Execution

The following environment variables must be defined before executing a COMPSs C/C++ application:
JAVA HOME Java JDK installation directory (e.g. /usr/lib/jvm/java-8-openjdk/)

After compiling the application, two directories, master and worker, are generated. The master directory contains
a binary called as the main file, which is the master application, in our example is called Matmul. The worker
directory contains another binary called as the main file followed by the suffix “-worker”, which is the worker
application, in our example is called Matmul-worker.

The runcompss script has to be used to run the application:

$ runcompss /home/compss/tutorial_apps/c/matmul_objects/master/Matmul 3 4 2.0

The complete list of options of the runcompss command is available in Section Fzecuting COMPSs applications.

4.3.5 Task Dependency Graph

COMPSs can generate a task dependency graph from an executed code. It is indicating by a

$ runcompss -g /home/compss/tutorial_apps/c/matmul_objects/master/Matmul 3 4 2.0

The generated task dependency graph is stored within the $HOME/ . COMPSs/<APP_NAME>_<00-99>/monitor direc-
tory in dot format. The generated graph is complete_graph.dot file, which can be displayed with any dot viewer.
COMPSs also provides the compss_gengraph script which converts the given dot file into pdf.

$ cd $HOME/.COMPSs/Matmul_02/monitor
$ compss_gengraph complete_graph.dot
$ evince complete_graph.pdf # or use any other pdf viewer you like

The following figure depicts the task dependency graph for the Matmul application in its object version with 3x3
blocks matrices, each one containing a 4x4 matrix of doubles. Each block in the result matrix accumulates three
block multiplications, i.e. three multiplications of 4x4 matrices of doubles.

N = 3, Matrix size
M = 4, Block size
Parallel tasks
[3x3] Matrix = 9 blocks
| o Each block
é accumulates 3
[4x4] matrix
multiplications
Implicit

synchronization

Explicit
synchronizations

Figure 6: Matmul Execution Graph.

The light blue circle corresponds to the initialization of matrix “A” by means of a method-task and it has an
implicit synchronization inside. The dark blue circles correspond to the other two initializations by means of

118 Chapter 4. Application development

COMPSs Documentation, 2.9

function-tasks; in this case the synchronizations are explicit and must be provided by the developer after the task
call. Both implicit and explicit synchronizations are represented as red circles.

Each green circle is a partial matrix multiplication of a set of 3. One block from matrix “A” and the correspondent
one from matrix “B”. The result is written in the right block in “C” that accumulates the partial block multipli-
cations. Each multiplication set has an explicit synchronization. All green tasks are method-tasks and they are
executed in parallel.

4.4 Constraints

This section provides a detailed information about all the supported constraints by the COMPSs runtime for Java,
Python and C/C++ languages. The constraints are defined as key-value pairs, where the key is the name of
the constraint. Table 14 details the available constraints names for Java, Python and C/C++, its value type, its
default value and a brief description.

4.4. Constraints 119

COMPSs Documentation,

2.9

Table 14: Arguments of the @constraint decorator

Java Python C/C++ Value type Default value Description
computingUnits | computing - ComputingU- <string> “1” Required num-
units nits ber of comput-
ing units
processorName | processor - ProcessorName | <string> “lunassigned|” Required pro-
name cessor name
processorSpeed | processor - ProcessorSpeed | <string> “[unassigned]” Required pro-
speed cessor speed
processorArchi- | processor ar- ProcessorArchi- | <string> “[unassigned|” Required pro-
tecture chitecture tecture cessor architec-
ture
processorType processor _type | ProcessorType <string> “[unassigned|” Required pro-
cessor type
processorProp- processor - ProcessorProp- | <string> “|unassigned|” Required pro-
ertyName property name | ertyName cessor property
processorProp- processor _ - ProcessorProp- | <string> “[unassigned]” Required pro-
erty Value property value | ertyValue cessor property
value
processorlnter- | processor in- ProcessorInter- | <string> “[unassigned]” Required inter-
nalMemorySize | ternal mem- nalMemorySize nal device mem-
ory _size ory
processors processors R List<@Processor“{}” Required pro-
cessors (check
Table 15 for
Processor de-
tails)
memorySize memory _size MemorySize <string> “[unassigned]” Required mem-
ory size in GBs
memoryType memory _type MemoryType <string> “[unassigned|” Required
memory
type (SRAM,
DRAM, etc.)
storageSize storage _size StorageSize <string> “[unassigned|” Required stor-
age size in
GBs
storageType storage type StorageType <string> “[unassigned|” Required stor-
age type (HDD,
SSD, etc.)
operatingSys- operating sys- | OperatingSys- <string> “[unassigned|” Required op-
temType tem_type temType erating system
type (Windows,
MacOS, Linux,
etc.)
operatingSys- operating sys- | OperatingSys- <string> “[unassigned]” Required op-
temDistribution | tem distribu- temDistribution erating system
tion distribution
(XP, Sierra,
openSUSE,
etc.)
operatingSys- operating sys- OperatingSys- <string> “[unassigned|” Required op-
temVersion tem_version temVersion erating system
version
wallClockLimit | wall clock - WallClockLimit | <string> “lunassigned|” Maximum wall
limit clock time
hostQueues host _queues HostQueues <string> “[unassigned]” Required
queues
appSoftware app_ software AppSoftware <string> “[unassigned|” Required ap-
120 Chapter 4. Applicati hc(?t'(gl\(f)gfop%lglgt

able within the
remote node for
the task

COMPSs Documentation, 2.9

All constraints are defined with a simple value except the HostQueue and AppSoftware constraints, which allow
multiple values.

The processors constraint allows the users to define multiple processors for a task execution. This constraint is
specified as a list of @Processor annotations that must be defined as shown in Table 15

Table 15: Arguments of the @Processor decorator

Annotation Value type | Default value | Description

processorType <string> “CpU” Required processor type (e.g. CPU or GPU)
computingUnits <string> “1” Required number of computing units

name <string> “|unassigned|” | Required processor name

speed <string> “lunassigned|” | Required processor speed

architecture <string> “lunassigned|” | Required processor architecture
propertyName <string> “[unassigned|” | Required processor property

propertyValue <string> “|unassigned]” | Required processor property value
internalMemorySize | <string> “[unassigned|” | Required internal device memory

4.4. Constraints 121

COMPSs Documentation, 2.9

122 Chapter 4. Application development

Chapter 5

Execution Environments

This section is intended to show how to execute the COMPSs applications.

5.1 Master-Worker Deployments

This section is intended to show how to execute the COMPSs applications deploying COMPSs as a master-worker
structure.

5.1.1 Local

This section is intended to walk you through the COMPSs usage in local machines.
5.1.1.1 Executing COMPSs applications
Prerequisites

Prerequisites vary depending on the application’s code language: for Java applications the users need to have a jar
archive containing all the application classes, for Python applications there are no requirements and for C/C+-+
applications the code must have been previously compiled by using the buildapp command.

For further information about how to develop COMPSs applications please refer to Application development.

Runcompss command

COMPSs applications are executed using the runcompss command:

compss@bsc:~$ runcompss [options] application_name [application_arguments]

The application name must be the fully qualified name of the application in Java, the path to the .py file containing
the main program in Python and the path to the master binary in C/C++.

The application arguments are the ones passed as command line to main application. This parameter can be
empty.

The runcompss command allows the users to customize a COMPSs execution by specifying different options. For
clarity purposes, parameters are grouped in Runtime configuration, Tools enablers and Advanced options.

123

COMPSs Documentation, 2.9

compss@bsc:~$ runcompss -h

Usage: /opt/COMPSs/Runtime/scripts/user/runcompss [options] application_name application_

—arguments
* Options:
General:
--help, -h Print this help message
--opts Show available options
--version, -v Print COMPSs version

Tools enablers:

--graph=<bool>, --graph, -g Generation of the complete graph (true/false)

When no

value is provided it is set to true

Default: false
--tracing=<level>, --tracing, -t Set generation of traces and/or tracing level ([,
—true | basic] | advanced | scorep | arm-map | arm-ddt | false)
True and basic levels will produce the sameg
—traces.
When no value is provided it is set to 1
Default: O
--monitoring=<int>, --monitoring, -m Period between monitoring samples (milliseconds)
When no value is provided it is set to 2000
Default: O

--external_debugger=<int>,
--external_debugger Enables
—specified port (or 9999 if empty)

external debugger connection on thej

Default: false
--jmx_port=<int> Enable JVM profiling on specified port
Runtime configuration options:
--task_execution=<compss|storage> Task execution under COMPSs or Storage.
Default: compss
--storage_impl=<string> Path to an storage implementation. Shortcut toy
—setting pypath and classpath. See Runtime/storage in your installation folder.
--storage_conf=<path> Path to the storage configuration file
Default: null
--project=<path> Path to the project XML file
Default: /opt/COMPSs//Runtime/configuration/xml/
—projects/default_project.xml
--resources=<path> Path to the resources XML file
Default: /opt/COMPSs//Runtime/configuration/xml/
—resources/default_resources.xml
--lang=<name> Language of the application (java/c/python)
Default: Inferred is possible. Otherwise: java
--summary Displays a task execution summary at the end of,
—the application execution
Default: false
--log_level=<level>, --debug, -d Set the debug level: off | info | api | debug I

—trace

Warning: Off level compiles with -02 optiony

—disabling asserts and __debug__
Default

Advanced options:

: off

(continues on next page)

124

Chapter 5. Execution Environments

COMPSs Documentation, 2.9

(continued from previous page)

--extrae_config_file=<path>

—shared disk between all COMPSs workers.

--extrae_config_file_python=<path>

Sets a custom extrae config file. Must be in aj

Default: null
Sets a custom extrae config file for python. Must,

—be in a shared disk between all COMPSs workers.

--trace_label=<string>

—used in the case of tracing is activated.

--comm=<ClassName>
—communications

--conn=<className>
—the cloud
—DefaultSSHConnector
—DefaultNoSSHConnector
—DefaultSSHConnector
--streaming=<type>
--streaming_master_name=<str>
--streaming_master_port=<int>

--scheduler=<className>

—fifodatalocation.FIFODatalLocationScheduler

—FIFOScheduler

—FIFODataScheduler

—LIFOScheduler

—TaskScheduler

—LoadBalancingScheduler

—LoadBalancingScheduler
--scheduler_config_file=<path>

—configuration.

--library_path=<path>

—(e.g. Java JVM library, Python library, C

--classpath=<path>

--appdir=<path>

Default: null
Add a label in the generated trace file. Only

Default: None
Class that implements the adaptor for

Supported adaptors:
es.bsc.compss.nio.master.NIOAdaptor
es.bsc.compss.gat.master.GATAdaptor

Default: es.bsc.compss.nio.master.NIOAdaptor

Class that implements the runtime connector fory

Supported connectors:
F—— es.bsc.compss.connectors.

L— es.bsc.compss.connectors.
Default: es.bsc.compss.connectors.

Enable the streaming mode for the given type.
Supported types: FILES, OBJECTS, PSCOS, ALL, NONE
Default: NONE
Use an specific streaming master node name.
Default: null
Use an specific port for the streaming master.
Default: null
Class that implements the Scheduler for COMPSs
Supported schedulers:

F—— es.bsc.compss.scheduler.

es.bsc.compss.scheduler.fifonew.
es.bsc.compss.scheduler.fifodatanew.
es.bsc.compss.scheduler.lifonew.

es.bsc.compss.components.impl.

T T T T

es.bsc.compss.scheduler.loadbalancing.
Default: es.bsc.compss.scheduler.loadbalancing.
Path to the file which contains the scheduler

Default: Empty

Non-standard directories to search for librariesg
binding library)

Default: Working Directory

Path for the application classes / modules
Default: Working Directory

Path for the application class folder.

(continues on next page)

5.1. Master-Worker Deployments

125

COMPSs Documentation, 2.9

(continued from previous page)

Default: /home/user
--pythonpath=<path> Additional folders or paths to add to the
—~PYTHONPATH
Default: /home/user
--env_script=<path> Path to the script file where the application
—environment variables are defined.
COMPSs sources this script before running they
—application.
Default: Empty
--base_log_dir=<path> Base directory to store COMPSs log files (a .
—COMPSs/ folder will be created inside this location)
Default: User home
--specific_log_dir=<path> Use a specific directory to store COMPSs log,
—files (no sandbox is created)
Warning: Overwrites --base_log_dir option
Default: Disabled

--uuid=<int> Preset an application UUID
Default: Automatic random generation
--master_name=<string> Hostname of the node to run the COMPSs master
Default:
--master_port=<int> Port to run the COMPSs master communications.

Only for NIO adaptor
Default: [43000,44000]

--jvm_master_opts="<string>" Extra options for the COMPSs Master JVM. Eachy
—option separed by "," and without blank spaces (Notice the quotes)
Default:
--jvm_workers_opts="<string>" Extra options for the COMPSs Workers JVMs. Each,
—option separed by "," and without blank spaces (Notice the quotes)
Default: -Xms1024m,-Xmx1024m,-Xmn400m
--cpu_affinity="<string>" Sets the CPU affinity for the workers

Supported options: disabled, automatic, user|
—defined map of the form "0-8/9,10,11/12-14,15,16"
Default: automatic
--gpu_affinity="<string>" Sets the GPU affinity for the workers
Supported options: disabled, automatic, usery
—defined map of the form "0-8/9,10,11/12-14,15,16"
Default: automatic
--fpga_affinity="<string>" Sets the FPGA affinity for the workers
Supported options: disabled, automatic, usery
—defined map of the form "0-8/9,10,11/12-14,15,16"
Default: automatic
--fpga_reprogram="<string>" Specify the full command that needs to bey
—executed to reprogram the FPGA with the desired bitstream. The location must be an absolute,
—path.

Default:
--io_executors=<int> I0 Executors per worker
Default: O
--task_count=<int> Only for C/Python Bindings. Maximum number of,
—different functions/methods, invoked from the application, that have been selected as tasks
Default: 50
--input_profile=<path> Path to the file which stores the input

—application profile
Default: Empty
--output_profile=<path> Path to the file to store the application profile
—at the end of the execution
Default: Empty

(continues on next page)

126 Chapter 5. Execution Environments

COMPSs Documentation, 2.9

(continued from previous page)

--PyObject_serialize=<bool> Only for Python Binding. Enable the object,
—serialization to string when possible (true/false).
Default: false
--persistent_worker_c=<bool> Only for C Binding. Enable the persistent workerg,
—in ¢ (true/false).
Default: false
--enable_external_adaptation=<bool> Enable external adaptation. This option will
—disable the Resource Optimizer.
Default: false

--gen_coredump Enable master coredump generation
Default: false
--keep_workingdir Do not remove the worker working directory aftery

—the execution
Default: false
--python_interpreter=<string> Python interpreter to use (python/python2/
—python3) .
Default: python Version:
--python_propagate_virtual_environment=<true> Propagate the master virtual environment,
—to the workers (true/false).
Default: true
--python_mpi_worker=<false> Use MPI to run the python worker instead of,
—multiprocessing. (true/false).
Default: false

--python_memory_profile Generate a memory profile of the master.
Default: false
--python_worker_cache=<string> Python worker cache (true/size/false).

Only for NIO without mpi worker and python >= 3.8.
Default: false

--wall_clock_limit=<int> Maximum duration of the application (in seconds).
Default: O

* Application name:
For Java applications: Fully qualified name of the application
For C applications: Path to the master binary
For Python applications: Path to the .py file containing the main program

* Application arguments:
Command line arguments to pass to the application. Can be empty.

Running a COMPSs application

Before running COMPSs applications the application files must be in the CLASSPATH. Thus, when launching
a COMPSs application, users can manually pre-set the CLASSPATH environment variable or can add the
--classpath option to the runcompss command.

The next three sections provide specific information for launching COMPSs applications developed in different
code languages (Java, Python and C/C++). For clarity purposes, we will use the Simple application (developed
in Java, Python and C++) available in the COMPSs Virtual Machine or at https://compss.bsc.es/projects/bar
webpage. This application takes an integer as input parameter and increases it by one unit using a task. For
further details about the codes please refer to Sample Applications.

Tip: For further information about applications scheduling refer to Schedulers.

5.1. Master-Worker Deployments 127

https://compss.bsc.es/projects/bar

COMPSs Documentation, 2.9

Running Java applications

A Java COMPSs application can be launched through the following command:

compss@bsc:~$ cd tutorial_apps/java/simple/jar/
compss@bsc:~/tutorial_apps/java/simple/jar$ runcompss simple.Simple <initial_number>

compss@bsc:~/tutorial_apps/java/simple/jar$ runcompss simple.Simple 1

[INFO] Using default execution type: compss

[INFO] Using default location for project file: /opt/COMPSs/Runtime/configuration/xml/
—projects/default_project.xml

[INFO] Using default location for resources file: /opt/COMPSs/Runtime/configuration/xml/
—resources/default_resources.xml

[INFO] Using default language: java

WARNING: COMPSs Properties file is null. Setting default values
[(1066) API] - Starting COMPSs Runtime v<version>

Initial counter value is 1

Final counter value is 2

[(4740) API] - Execution Finished

In this first execution we use the default value of the --classpath option to automatically add the jar file to the
classpath (by executing runcompss in the directory which contains the jar file). However, we can explicitly do this
by exporting the CLASSPATH variable or by providing the --classpath value. Next, we provide two more
ways to perform the same execution:

compss@bsc:~$ export CLASSPATH=$CLASSPATH:/home/compss/tutorial_apps/java/simple/jar/simple.
—jar
compss@bsc:~$ runcompss simple.Simple <initial_number>

compss@bsc:~$ runcompss --classpath=/home/compss/tutorial_apps/java/simple/jar/simple.jar \
simple.Simple <initial_number>

Running Python applications

To launch a COMPSs Python application users have to provide the --lang=python option to the runcompss
command. If the extension of the main file is a regular Python extension (.py or .pyc) the runcompss command
can also infer the application language without specifying the lang flag.

compss@bsc:~$ cd tutorial_apps/python/simple/
compss@bsc:~/tutorial_apps/python/simple$ runcompss --lang=python ./simple.py <initial_number>

compss@bsc:~/tutorial_apps/python/simple$ runcompss simple.py 1

[INFO] Using default execution type: compss

[INFO] Using default location for project file: /opt/COMPSs/Runtime/configuration/xml/
—projects/default_project.xml

[INFO] Using default location for resources file: /opt/COMPSs/Runtime/configuration/xml/
—resources/default_resources.xml

[INFO] Inferred PYTHON language

(continues on next page)

128 Chapter 5. Execution Environments

COMPSs Documentation, 2.9

(continued from previous page)

WARNING: COMPSs Properties file is null. Setting default values
[(616) API] - Starting COMPSs Runtime v<version>

Initial counter value is 1

Final counter value is 2

[(4297) API] - Execution Finished

Attention: Executing without debug (e.g. default log level or --1log_level=off) uses -O2 compiled sources,
disabling asserts and __debug__.

Alternatively, it is possible to execute the a COMPSs Python application using pycompss as module:

compss@bsc:~$ python -m pycompss <runcompss_flags> <application> <application_parameters>

Consequently, the previous example could also be run as follows:

compss@bsc:~$ cd tutorial_apps/python/simple/
compss@bsc:~/tutorial_apps/python/simple$ python -m pycompss simple.py <initial_number>

If the -m pycompss is not set, the application will be run ignoring all PyCOMPSs imports, decorators and API
calls, that is, sequentially.

In order to run a COMPSs Python application with a different interpreter, the runcompss command provides a
specific flag:

compss@bsc:~$ cd tutorial_apps/python/simple/

compss@bsc:~/tutorial_apps/python/simple$ runcompss --python_interpreter=python3 ./simple.py
—<initial_number>

However, when using the pycompss module, it is inferred from the python used in the call:

compss@bsc:~$ cd tutorial_apps/python/simple/
compss@bsc:~/tutorial_apps/python/simple$ python3 -m pycompss simple.py <initial_number>

Finally, both runcompss and pycompss module provide a particular flag for virtual environment propagation
(--python_propagate_virtual_environment=<bool>). This, flag is intended to activate the current virtual en-
vironment in the worker nodes when set to true.

Specific flags

Some of the runcompss flags are only for PyCOMPSs application execution:

--pythonpath—=<path> Additional folders or paths to add to the PYTHONPATH Default:
/home /user

--PyObject serialize—=<'bool> Only for Python Binding. Enable the object serialization to
string when possible (true/false). Default: false

--python__interpreter=<string> Python interpreter to use (python/python2/python3). De-
fault: “python” version

--python propagate virtual environment—=<true> Propagate the master virtual environ-
ment to the workers (true/false). Default: true

--python mpi worker=<false> Use MPI to run the python worker instead of multiprocessing.
(true/false). Default: false

5.1. Master-Worker Deployments 129

COMPSs Documentation, 2.9

--python memory profile Generate a memory profile of the master. Default: false
See: Memory Profiling

--python worker cache=<string> Python worker cache (true/true:ize/false). Only for NIO
without mpi worker and python >= 3.8. Default: false

See: Worker cache

Worker cache

The --python_worker_cache is used to enable a cache between processes on each worker node. More specifically,
this flag enables a shared memory space between the worker processes, so that they can share objects between
processess in order to leverage the deserialization overhead.

The possible values are:

--python_worker_cache=false Disable the cache. This is the default value.
--python_worker_cache=true Enable the cache. The default cache size is 25% of the worker node memory.
--python_worker_cache=true:<SIZE> Enable the cache with specific cache size (in bytes).

During execution, each worker will try to store automatically the parameters and return objects, so that next tasks
can make use of them without needing to deserialize from file.

Important: The supported objects to be stored in the cache is limited to: python primitives (int, float,
bool, str (less than 10 Mb), bytes (less than 10 Mb) and None), lists (composed by python primitives), tuples
(composed by python primitives) and Numpy ndarrays.

It is important to take into account that storing the objects in cache has some non negligible overhead that can
be representative, while getting objects from cache shows to be more efficient than deserialization. Consequently,
the applications that most benefit from the cache are the ones that reuse many times the same objects.

Avoiding to store an object into the cache is possible by setting Cache to False into the @task decorator for the
parameter. For example, Code 91 shows how to avoid caching the value parameter.

Code 91: Avoid parameter caching

from pycompss.api.task import task
from pycompss.api.parameter import *

Otask(value={Cache: False})
def mytask(value):

Additional features
Concurrent serialization

It is possible to perform concurrent serialization of the objects in the master when using Python 3. To this end,
just export the COMPSS_THREADED_SERIALIZATION environment variable with any value:

compss@bsc:~$ export COMPSS_THREADED_SERTALIZATION=1

Caution: Please, make sure that the COMPSS_THREADED_SERIALIZATION environment variable is not in the
environment (env) to avoid the concurrent serialization of the objects in the master.

130 Chapter 5. Execution Environments

COMPSs Documentation, 2.9

Tip: This feature can also be used within supercomputers in the same way.

Running C/C++ applications

To launch a COMPSs C/C++ application users have to compile the C/C++ application by means of the buildapp
command. For further information please refer to C/C++ Binding. Once complied, the --lang=c option must be
provided to the runcompss command. If the main file is a C/C++ binary the runcompss command can also infer
the application language without specifying the lang flag.

compss@bsc:~$ cd tutorial_apps/c/simple/
compss@bsc:~/tutorial_apps/c/simple$ runcompss --lang=c simple <initial_number>

compss@bsc:~/tutorial_apps/c/simple$ runcompss ~/tutorial_apps/c/simple/master/simple 1

[INFO] Using default execution type: compss

[INFO] Using default location for project file: /opt/COMPSs/Runtime/configuration/xml/
—projects/default_project.xml

[INFO] Using default location for resources file: /opt/COMPSs/Runtime/configuration/xml/
—resources/default_resources.xml

[INFO] Inferred C/C++ language

JVM_OPTIONS_FILE: /tmp/tmp.ItT1tQfKgP
COMPSS_HOME: /opt/COMPSs
Args: 1

WARNING: COMPSs Properties file is null. Setting default values

[(650) API] - Starting COMPSs Runtime v<version>

Initial counter value is 1

[BINDING] - Q@compss_wait_on - Entry.filename: counter

[BINDING] - Qcompss_wait_on - Runtime filename: d1v2_1497432831496.IT
Final counter value is 2

[(4222) API] - Execution Finished

Walltime

The runcompss command provides the --wall_clock_limit for the users to specify the maximum execution time
for the application (in seconds). If the time is reached, the execution is stopped.

Tip: This flag enables to stop the execution of an application in a contolled way if the execution is taking more
than expected.

5.1. Master-Worker Deployments 131

COMPSs Documentation, 2.9

Additional configurations

The COMPSs runtime has two configuration files: resources.xml and project.xml . These files contain infor-
mation about the execution environment and are completely independent from the application.

For each execution users can load the default configuration files or specify their custom configurations by us-
ing, respectively, the --resources=<absolute_path_to_resources.xml> and the --project=<absolute_path_-
to_project.xml> in the runcompss command. The default files are located in the /opt/COMPSs/Runtime/
configuration/xml/ path. Users can manually edit these files or can use the Eclipse IDE tool developed for
COMPSs. For further information about the Eclipse IDE please refer to COMPSs IDE Section.

For further details please check the Configuration Files.

5.1.1.2 Results and logs

Results

When executing a COMPSs application we consider different type of results:

e Application Output: Output generated by the application.
e Application Files: Files used or generated by the application.
e Tasks Output: Output generated by the tasks invoked from the application.

Regarding the application output, COMPSs will preserve the application output but will add some pre and post
output to indicate the COMPSs Runtime state. Figure 7 shows the standard output generated by the execution
of the Simple Java application. The green box highlights the application stdout while the rest of the output is
produced by COMPSs.

compss@bsc:~/tutorial_apps/java/simple/jar$ runcompss simple.Simple 1
INFO] Using default execution type: compss
INFO] Using default location for project file: fopt/COMPSs/Runtime/configuration/xml/projects/default_project.xml
INFO] Using default location for resources file: [opt/COMPSs/Runtimefconfiguration/xml/resources/default_resources.xml

Executing simple.Simple

WARNING: IT Properties file is null. Setting default values
[(1046) API] - Starting COMPSs Runtime

Initial counter value is 1

Final counter value is 2

[(4107) API] - Execution Finished

Figure 7: Output generated by the execution of the Simple Java application with COMPSs

Regarding the application files, COMPSs does not modify any of them and thus, the results obtained by executing
the application with COMPSs are the same than the ones generated by the sequential execution of the application.

Regarding the tasks output, COMPSs introduces some modifications due to the fact that tasks can be executed in
remote machines. After the execution, COMPSs stores the stdout and the stderr of each job (a task execution) in-
side the ** /home/$USER/.COMPSs/$APPNAME /$EXEC NUMBER/jobs/" " directory of the main
application node.

Figure 8 and Figure 9 show an example of the results obtained from the execution of the Hello Java application.
While Figure 8 provides the output of the sequential execution of the application (without COMPSs), Figure 9
provides the output of the equivalent COMPSs execution. Please note that the sequential execution produces the
Hello World! (from a task) message in the stdout while the COMPSs execution stores the message inside the
job1_NEW.out file.

compssf@bsc:~/workspace_java/hello/fjar$ java -cp hello.jar hello.Hello

Hello World! (from main application)
Hello World! (from a task)

Figure 8: Sequential execution of the Hello java application

132 Chapter 5. Execution Environments

COMPSs Documentation, 2.9

compss@bsc:~/tutorial_apps/java/hello/jarS runcompss -d hello.Hello
INFO] Using default execution type: compss
INFO] Using default location for project file: /opt/COMPSs/Runtime/configuration/xml/projects/default_project.xml
INFO] Using default location for resources file: fopt/COMPSs/Runtime/configuration/xml/resources/default_resources.xml

Executing hello.Hello

WARNING: IT Properties file is null. Setting default values
API] - Deploying COMPSs Runtime
Starting COMPSs Runtime
Initializing components
Readv to process tasks
Hello World! (from main application)
API] - Creating task from method sayHello in hello.HelloImpl
API] - There is © parameter
API] - No more tasks for app 1
API] - Getting Result Files 1
API] - Stop IT reached
API] - Stopping AP...
API] - Stopping TD...
API] - Stopping Comm...
[(3934) API] - Runtime stopped
[(3934) API] - Execution Finished

compss@bsc:~/tutorial_apps/java/hello/jar$ more ~/.COMPSs/hello.Hello_81/jobs/jobl_ NEW.out
[JAVA EXECUTOR] executeTask - Begin task execution
WORKER - Parameters of execution:
* Method type: METHOD
* Method definition: [DECLARING CLASS=hello.HelloImpl, METHOD NAME=sayHello]
* Parameter types:
* Parameter values:
Hello World! (from a task)
LJAVA EXECUTOR| executeTask - End task execution

Figure 9: COMPSs execution of the Hello java application

Logs

COMPSs includes three log levels for running applications but users can modify them or add more levels by
editing the logger files under the /opt/COMPSs/Runtime/configuration /log/ folder. Any of these log levels can
be selected by adding the --log_level=<debug | info | off> flag to the runcompss command. The default
value is off.

The logs generated by the NUM_EXEC execution of the application APP by the user USER are stored under /home/
$USER/ . COMPSs/$APP/$EXEC_NUMBER/ folder (from this point on: base log folder). The EXEC_NUMBER execution
number is automatically used by COMPSs to prevent mixing the logs of data of different executions.

When running COMPSs with log level off only the errors are reported. This means that the base log folder
will contain two empty files (runtime.log and resources.log) and one empty folder (jobs). If somehow the
application has failed, the runtime.log and/or the resources.log will not be empty and a new file per failed job
will appear inside the jobs folder to store the stdout and the stderr. Figure 10 shows the logs generated by the
execution of the Simple java application (without errors) in off mode.

.COMPSs/
L— r4.ek] simp
[4.0K]

[®] resources.log
[o]
[4.0K]

Figure 10: Structure of the logs folder for the Simple java application in off mode

When running COMPSs with log level info the base log folder will contain two files (runtime.log and resources.
log) and one folder (jobs). The runtime.log file contains the execution information retrieved from the master
resource, including the file transfers and the job submission details. The resources.log file contains information
about the available resources such as the number of processors of each resource (slots), the information about
running or pending tasks in the resource queue and the created and destroyed resources. The jobs folder will be
empty unless there has been a failed job. In this case it will store, for each failed job, one file for the stdout
and another for the stderr. As an example, Figure 11 shows the logs generated by the same execution than the
previous case but with info mode.

The runtime.log and resources.log are quite large files, thus they should be only checked by advanced users.
For an easier interpretation of these files the COMPSs Framework includes a monitor tool. For further information
about the COMPSs Monitor please check COMPSs Monitor.

5.1. Master-Worker Deployments 133

COMPSs Documentation, 2.9

.COMPSs/
1S 4.0K] sir
[4.0K]

[612] resources.log
[16eK] runtime.log
[4.8K] tmpFiles

Figure 11: Structure of the logs folder for the Simple java application in info mode

Figure 12 and Figure 13 provide the content of these two files generated by the execution of the Simple java
application.

compss@bsc:~/.COMPSs/simple.Simple_02$ cat runtime.log

[(732)(2015-08-20 16:34:30,731) TaskScheduler] @<init> Initialization finished

[(738)(2015-08-20 16:34:30,737) TaskScheduler] @<init> Initialization finished

[(742)(2015-08-20 16:34:30,741) JobManager] @<init> Initialization finished

[(742)(2015-08-20 16:34:30,741) TaskDispatcher] @<init> Initialization finished

[(748)(2015-08-20 16:34:30,747) TaskAnalyser] @<init> Initialization finished

[(753)(2015-08-20 4:30,752) TaskScheduler] @esourcesCreated Resource http://bscgride5.bsc.es:20390/hmmerobj/hmmerobj?wsdl
created

[(753)(2015-08-20 1 :30,752) DataInfoProvider] @<init> Initialization finished

[(787)(2015-08-20 16:34:30,786) TaskAnalyser] @processTask New method task(increment), ID = 1
[(791)(2015-88-20 1 30,790) TaskScheduler] @scheduleTask Blocked: Task(1, increment)

[(1479)(2015-08-20 1 :31,478) Communication] @etWorkerIsReady Notifying that worker is ready localhost
[(1892)(2015-08-20 $31,891) TaskScheduler] @esourcesCreated Resource localhost created

[(1893)(2015-08-20 :31,892) TaskScheduler] @asksForResource Availlable Resource: localhost. Task: 1, score: @
[(1894)(2015-08-20 $31,893) JobManager] @processJob New Job 1 (Task: 1)

[(1894)(2015-08-20 :31,893) JobManager] @processJob * Method name: increment

[(1895)(2015-08-20 :31,894) JobManager] @processJob * Target host: localhost

[(1899)(2015-08-20 :31,898) Communication] @submit Submit NIOJob with ID 1

[(1944)(2015-08-20 $31,943) JobManager] @completedlob Received a notification for job 1 with state 0K
[(1945)(2015-08-20 :31,944) TaskProcessor] @notifyTaskEnd Notification received for task 1 with end status FINISHED
[(1946)(2015-08-20 :31,945) TaskProcessor] @waitForTask End of waited task for data 1

[(1955)(2015-08-20 :31,954) TaskProcessor] @noMoreTasks All tasks finished

[(1962)(2015-08-20 :31,961) TaskProcessor] @run AccessProcessor shutdown

[(1965)(2015-08-20 16:34:31,964) Communication] @stop Shutting down localhost:43601

Figure 12: runtime.log generated by the execution of the Simple java application

Running COMPSs with log level debug generates the same files as the info log level but with more detailed
information. Additionally, the jobs folder contains two files per submitted job; one for the stdout and another
for the stderr. In the other hand, the COMPSs Runtime state is printed out on the stdout. Figure 14 shows the
logs generated by the same execution than the previous cases but with debug mode.

The runtime.log and the resources.log files generated in this mode can be extremely large. Consequently, the
users should take care of their quota and manually erase these files if needed.

When running Python applications a pycompss.log file is written inside the base log folder containing debug
information about the specific calls to PyCOMPSs.

Furthermore, when running runcompss with additional flags (such as monitoring or tracing) additional folders will
appear inside the base log folder. The meaning of the files inside these folders is explained in COMPSs Tools.

5.1.1.3 COMPSs Tools

Application graph

At the end of the application execution a dependency graph can be generated representing the order of execution
of each type of task and their dependencies. To allow the final graph generation the -g flag has to be passed to
the runcompss command; the graph file is written in the base_log_folder/monitor/complete_graph.dot at the
end of the execution.

Figure 15 shows a dependency graph example of a SparseLU java application. The graph can be visualized by
running the following command:

compss@bsc:~$ compss_gengraph ~/.COMPSs/sparselU.arrays.SparseLU_01/monitor/complete_graph.dot

134 Chapter 5. Execution Environments

COMPSs Documentation, 2.9
compss@bsc:~/.COMPSs/simple.Simple_025 cat resources.log
TIMESTAMP = 1440081270727
INFO_MSG = [New resource available in the pool. Name = http://bscgrid@s.bsc.es:20398/hmmerobj/hmmerobj?wsdl]
TIMESTAMP 1440081270752
LOAD_INFO = [
CORE_INFO = [
COREID = @
NO_RESOURCE = ©
TO_RESCHEDULE = @
ORDINARY = 0
MIN = 100
MEAN = 180
MAX = 100
]
TIMESTAMP = 1440081271891
INFO_MSG = [New resource available in the pool. Name = localhost]
TIMESTAMP = 1440081271962
[stopping all workers]
1440081271962
CORE_INFO = [
COREID = @
NO_RESOURCE = ©
TO_RESCHEDULE = 8
ORDINARY = ©
MIN = 56
MEAN = 56
= 56
Figure 13: resources.log generated by the execution of the Simple java application
. COMP
L [4.8Kk] simple.
4.0K] o
[©] jobl_NEW.err
[380] jobl_NEW.out
[612] resources.log
[70K] runtime.log
[4.0K] tmpFiles
Figure 14: Structure of the logs folder for the Simple java application in debug mode
Figure 15: The dependency graph of the SparseLU application
5.1. Master-Worker Deployments 135

COMPSs Documentation, 2.9

COMPSs Monitor

The COMPSs Framework includes a Web graphical interface that can be used to monitor the execution of COMPSs
applications. COMPSs Monitor is installed as a service and can be easily managed by running any of the following
commands:

compss@bsc:~$ /etc/init.d/compss-monitor usage
Usage: compss-monitor {start | stop | reload | restart | try-restart | force-reload | status}

Service configuration

The COMPSs Monitor service can be configured by editing the /opt/COMPSs/Tools/monitor/apache-tomcat/
conf/compss-monitor.conf file which contains one line per property:

COMPSS MONITOR Default directory to retrieve monitored applications (defaults to the .COMPSs folder
inside the root user).

COMPSs MONITOR _PORT Port where to run the compss-monitor web service (defaults to 8080).

COMPSs MONITOR TIMEOUT Web page timeout between browser and server (defaults to 20s).

Usage

In order to use the COMPSs Monitor users need to start the service as shown in Figure 16.

compss@bsc:~5 fetc/init.d/compss-monitor start
* Starting COMPSs Monitor
* Checking JAVA Installation...
Warning: JRE_HOME not defined
Info: JAVA_HOME found.
Loading JRE_HOME from JAVA_HOME
Success
* Checking IT_HOME...
WARNING: IT _HOME not defined. Trying default location /opt/COMPSs/
Success
* Checking IT MONITOR...
IT_MONITOR=/home/compss/.COMPSs/
success
* Checking COMPSs Monitor Port...
Warning: COMPSs_MONITOR_PORT not defined.
Loading from configuration file.
COMPSs_MONITOR_PORT=8080
success
* Checking COMPSs Monitor Timeout...
Warning: COMPSs_MONITOR_TIMEOUT not defined.
Loading from configuration file.
COMPSs_MONITOR_TIMEOUT=20000
success
* Configuring COMPSs Monitor service...
Success
CATALINA_BASE: Jopt/COMPSs/Tools/monitor/apache-tomcat
CATALINA_HOME: Jopt/COMPSs /Tools/monitor/apache-tomcat
CATALINA_TMPDIR: /opt/COMPSs/Tools/monitor/apache-tomcat/temp
JRE_HOME : Jusr/lib/jvm/java-8-openjdk-amd64//jre
CLASSPATH: J/opt/COMPSs/Tools/monitor/apache-tomcat/bin/bootstrap.jar:/opt/COMPSs/Tools/monitor/apache-tomcat/bin/tomcat-juli.jar
Tomcat started.

Figure 16: COMPSs Monitor start command

And use a web browser to open the specific URL:

compss@bsc:~$ firefox http://localhost:8080/compss-monitor &

The COMPSs Monitor allows to monitor applications from different users and thus, users need to first login to
access their applications. As shown in Figure 17, the users can select any of their executed or running COMPSs
applications and display it.

To enable all the COMPSs Monitor features, applications must run the runcompss command with the -m flag.
This flag allows the COMPSs Runtime to store special information inside inside the log_base_folder under the
monitor folder (see Figure 17 and Figure 18). Only advanced users should modify or delete any of these files. If
the application that a user is trying to monitor has not been executed with this flag, some of the COMPSs Monitor
features will be disabled.

136 Chapter 5. Execution Environments

COMPSs Documentation, 2.9

COMPSs Monitor x

(€) @ | localhost:8080/compss-monitor/index.zul e | [Q search | % & 3+ A © =

Barcelona
Supercomputing COMPSS MONITOR

| FaQ | | coniiguration | | Logout |

Center —
Centro Nacional de Supercomputacion

Applications < || Resources information | Tasksinformation | Curenttasksgraph | Completetasksgraph | Loadchart = Runtimelog | Execution information | Statistics

@jsimple.Simple_01
®)simpie.Simple status Resource Name CPU Computing Units | GPU Computing Units | FPGA Computing Units | OTHER Computing Units | Memory Size | Disk Size Provider Image Running Actions

| Refresh ° localhost 4 - = S -cB -G8

Figure 17: COMPSs monitoring interface

compss@bsc:~/tutorial_apps/java/simple/jar$ runcompss -dm simple.Simple 1

[INFO] Using default execution type: compss

[INFO] Using default location for project file: /opt/COMPSs/Runtime/configuration/xml/
—projects/default_project.xml

[INFO] Using default location for resources file: /opt/COMPSs/Runtime/configuration/xml/
—resources/default_resources.xml

[INFO] Using default language: java

WARNING: COMPSs Properties file is null. Setting default values

[(799) API] - Deploying COMPSs Runtime v<version>

[(801) API] - Starting COMPSs Runtime v<version>

[(801) API] - 1Initializing components

[(1290) API] - Ready to process tasks

[(1293) API] - Opening /home/compss/tutorial_apps/java/simple/jar/counter in mode OUT
[(1338) API] - File target Location: /home/compss/tutorial_apps/java/simple/jar/counter
Initial counter value is 1

[(1340) API] - Creating task from method increment in simple.SimpleImpl

[(1340) API] - There is 1 parameter

[(1341) APTI] - Parameter 1 has type FILE_T

Final counter value is 2

[(4307) API] - No more tasks for app 1

[(4311) API] - Getting Result Files 1

[(4340) API] - Stop IT reached

[(4344) API] - Stopping Graph generation...

[(4344) API] - Stopping Monitor...

[(6347) API] - Stopping AP...

[(6348) API] - Stopping TD...

[(6509) API] - Stopping Comm...

[(6510) API] - Runtime stopped

(continues on next page)

5.1. Master-Worker Deployments 137

COMPSs Documentation, 2.9

(continued from previous page)

[(6510) API] - Execution Finished

compss@bsc:~$ cd .COMPSs/
compssf@bsc:~/.COMPSsS tree

jobl_NEW.err
jobl_NEW.out

monitor
complete_graph.dot
COMPSs_state.xml
current_graph.dot

resources.log

runtime.log

tmp

Figure 18: Logs generated by the Simple java application with the monitoring flag enabled

Graphical Interface features

In this section we provide a summary of the COMPSs Monitor supported features available through the graphical
interface:

Resources information Provides information about the resources used by the application

Tasks information Provides information about the tasks definition used by the application

Current tasks graph Shows the tasks dependency graph currently stored into the COMPSs Runtime

Complete tasks graph Shows the complete tasks dependecy graph of the application

Load chart Shows different dynamic charts representing the evolution over time of the resources load and

the tasks load

Runtime log Shows the runtime log

e Execution Information Shows specific job information allowing users to easily select failed or uncompleted
jobs

e Statistics Shows application statistics such as the accumulated cloud cost.

Important: To enable all the COMPSs Monitor features applications must run with the -m flag.

The webpage also allows users to configure some performance parameters of the monitoring service by accessing
the Configuration button at the top-right corner of the web page.

For specific COMPSs Monitor feature configuration please check our FAQ section at the top-right corner of the
web page.

Application tracing

COMPSs Runtime can generate a post-execution trace of the execution of the application. This trace is useful for
performance analysis and diagnosis.

A trace file may contain different events to determine the COMPSs master state, the task execution state or the
file-transfers. The current release does not support file-transfers informations.

During the execution of the application, an XML file is created in the worker nodes to keep track of these events.
At the end of the execution, all the XML files are merged to get a final trace file.

In this manual we only provide information about how to obtain a trace and about the available Paraver (the tool
used to analyze the traces) configurations. For further information about the application instrumentation or the
trace visualization and configurations please check the Tracing Section.

138 Chapter 5. Execution Environments

COMPSs Documentation, 2.9

Trace Command

In order to obtain a post-execution trace file one of the following options -t, --tracing, --tracing=true,
--tracing=basic must be added to the runcompss command. All this options activate the basic tracing mode;
the advanced mode is activated with the option --tracing=advanced. For further information about advanced
mode check the COMPSs applications tracing Section. Next, we provide an example of the command execution
with the basic tracing option enabled for a java K-Means application.

compss@bsc:~$ runcompss -t kmeans.Kmeans
% RUNNING JAVA APPLICATION KMEANS
[INFO] Relative Classpath resolved: /path/to/jar/kmeans.jar

Welcome to Extrae VERSION

Extrae: Parsing the configuration file (/opt/COMPSs/Runtime/configuration/xml/tracing/extrae_
—basic.xml) begins

Extrae: Warning! <trace> tag has no <home> property defined.

Extrae: Generating intermediate files for Paraver traces.

Extrae: <cpu> tag at <counters> level will be ignored. This library does not support CPU HW.
Extrae: Tracing buffer can hold 100000 events

Extrae: Circular buffer disabled.

Extrae: Dynamic memory instrumentation is disabled.

Extrae: Basic I/0 memory instrumentation is disabled.

Extrae: System calls instrumentation is disabled.

Extrae: Parsing the configuration file (/opt/COMPSs/Runtime/configuration/xml/tracing/extrae_
—basic.xml) has ended

Extrae: Intermediate traces will be stored in /user/folder

Extrae: Tracing mode is set to: Detail.

Extrae: Successfully initiated with 1 tasks and 1 threads

WARNING: COMPSs Properties file is null. Setting default values

[(751) API] - Deploying COMPSs Runtime v<version>
[(753) API] - Starting COMPSs Runtime v<version>
[(753) API] - 1Initializing components
[(1142) API] - Ready to process tasks

merger: Output trace format is: Paraver

merger: Extrae 3.3.0 (revision 3966 based on extrae/trunk)

mpi2prv: Assigned nodes < Marginis >

mpi2prv: Assigned size per processor < <1 Mbyte >

mpi2prv: File set-0/TRACE@Marginis.0000001904000000000000.mpit is object 1.1.1 on node
—Marginis assigned to processor 0O

mpi2prv: File set-0/TRACE@Marginis.0000001904000000000001.mpit is object 1.1.2 on nodey
—Marginis assigned to processor 0

mpi2prv: File set-0/TRACE@Marginis.0000001904000000000002.mpit is object 1.1.3 on node
—Marginis assigned to processor 0O

mpi2prv: File set-0/TRACE@Marginis.0000001980000001000000.mpit is object 1.2.1 on nodey
—Marginis assigned to processor 0O

mpi2prv: File set-0/TRACE@Marginis.0000001980000001000001.mpit is object 1.2.2 on node
—Marginis assigned to processor 0O

mpi2prv: File set-0/TRACE@Marginis.0000001980000001000002.mpit is object 1.2.3 on node
—Marginis assigned to processor 0O

mpi2prv: File set-0/TRACE@Marginis.0000001980000001000003.mpit is object 1.2.4 on nodey
—Marginis assigned to processor 0O

(continues on next page)

5.1. Master-Worker Deployments 139

COMPSs Documentation, 2.9

(continued from previous page)

mpi2prv: File set-0/TRACE@Marginis.0000001980000001000004.mpit is object 1.2.5 on node
—Marginis assigned to processor 0
mpi2prv: Time synchronization has been turned off
mpi2prv: A total of 9 symbols were imported from TRACE.sym file
mpi2prv: O function symbols imported
mpi2prv: 9 HWC counter descriptions imported
mpi2prv: Checking for target directory existance... exists, ok!
mpi2prv: Selected output trace format is Paraver
mpi2prv: Stored trace format is Paraver
mpi2prv: Searching synchronization points... done
mpi2prv: Time Synchronization disabled.
mpi2prv: Circular buffer enabled at tracing time? NO
mpi2prv: Parsing intermediate files
mpi2prv: Progress 1 of 2 ... 5% 10% 15% 20} 25} 307% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80} 85
—% 90% 95% done
mpi2prv: Processor O succeeded to translate its assigned files
mpi2prv: Elapsed time translating files: O hours O minutes O seconds
mpi2prv: Elapsed time sorting addresses: O hours O minutes O seconds
mpi2prv: Generating tracefile (intermediate buffers of 838848 events)
This process can take a while. Please, be patient.
mpi2prv: Progress 2 of 2 ... 5% 10% 15% 20% 25}, 30% 35% 407 45% 50% 55} 60% 65% 70% 75% 80% 85
% 90% 957 done
mpi2prv: Warning! Clock accuracy seems to be in microseconds instead of nanoseconds.
mpi2prv: Elapsed time merge step: O hours O minutes O seconds
mpi2prv: Resulting tracefile occupies 991743 bytes
mpi2prv: Removing temporal files... done
mpi2prv: Elapsed time removing temporal files: O hours O minutes O seconds
mpi2prv: Congratulations! ./trace/kmeans.Kmeans_compss_trace_1460456106.prv has been,
—generated.
[API] - Execution Finished

At the end of the execution the trace will be stored inside the trace folder under the application log directory.

compss@bsc:~$ cd .COMPSs/kmeans.Kmeans_01/trace/
compss@bsc:~$ 1s -1
kmeans.Kmeans_compss_trace_1460456106.pct
kmeans.Kmeans_compss_trace_1460456106.prv
kmeans.Kmeans_compss_trace_1460456106.row

Trace visualization

The traces generated by an application execution are ready to be visualized with Paraver. Paraver is a powerful
tool developed by BSC that allows users to show many views of the trace data by means of different configuration
files. Users can manually load, edit or create configuration files to obtain different trace data views.

If Paraver is installed, issue the following command to visualize a given tracefile:

compss@bsc:~$ wxparaver path/to/trace/trace_name.prv

For further information about Paraver please visit the following site: http://www.bsc.es/computer-sciences/
performance-tools /paraver

140 Chapter 5. Execution Environments

http://www.bsc.es/computer-sciences/performance-tools/paraver
http://www.bsc.es/computer-sciences/performance-tools/paraver

COMPSs Documentation, 2.9

COMPSs IDE

COMPSs IDE is an Integrated Development Environment to develop, compile, deploy and execute COMPSs
applications. It is available through the FEclipse Market as a plugin and provides an even easier way to work with
COMPSs.

For further information please check the COMPSs IDE User Guide available at: http://compss.bsc.es .

5.1.2 Supercomputers

This section is intended to walk you through the COMPSs usage in Supercomputers.

5.1.2.1 Executing COMPSs applications

Loading the COMPSs Environment

Depending on the supercomputer installation, COMPSs can be loaded by an environment script, or an Environment
Module. The following paragraphs provide the details about how to load the COMPSs environment in the different
situations.

COMPSs Environment Script

After a successful installation from the supercomputers package, users can find the compssenv script in the folder
where COMPSs was installed. This script can be used to load the COMPSs environment in the system as indicated
below.

$ source <COMPSS_INSTALLATION_DIR>/compssenv

COMPSs Environment Module

In BSC supercomputers, COMPSs is configured as an Environment Module. As shown in next Figure, users can
type the module available COMPSs command to list the supported COMPSs modules in the supercomputer. The
users can also execute the module load COMPSs/<version> command to load an specific COMPSs module.

$ module available COMPSs

—————————— /apps/modules/modulefiles/tools ----------
COMPSs/1.
COMPSs/1.
COMPSs/2.
COMPSs/2.
COMPSs/2.
COMPSs/2.
COMPSs/2.
COMPSs/2.
COMPSs/2.
COMPSs/2.
COMPSs/2.
COMPSs/2.9
COMPSs/release(default)
COMPSs/trunk

O ~NO ULk WN P O bW

$ module load COMPSs/release

(continues on next page)

5.1. Master-Worker Deployments 141

http://compss.bsc.es

COMPSs Documentation, 2.9

(continued from previous page)

load java/1.8.0u66 (PATH, MANPATH, JAVA_HOME, JAVA_ROOT, JAVA_BINDIR,
SDK_HOME, JDK_HOME, JRE_HOME)

load MKL/11.0.1 (LD_LIBRARY_PATH)

load PYTHON/2.7.3 (PATH, MANPATH, LD_LIBRARY_PATH, C_INCLUDE_PATH)

load COMPSs/release (PATH, MANPATH, COMPSS_HOME)

The following command can be run to check if the correct COMPSs version has been loaded:

$ enqueue_compss --version
COMPSs version <version>

Configuration Notes

The COMPSs module contains all the COMPSs dependencies, including Java, Python and MKL. Modifying any
of these dependencies can cause execution failures and thus, we do not recomend to change them. Before running
any COMPSs job please check your environment and, if needed, comment out any line inside the .bashrc file that
loads custom COMPSs, Java, Python and/or MKL modules.

The COMPSs environment needs to be loaded in all the nodes that will run COMPSs jobs. Some queue system
(such as Slurm) already forward the environment in the allocated nodes. If it is not the case, the module load or
the compssenv script must be included in your .bashrc file. To do so, please run the following command with
the corresponding COMPSs version:

$ cat "module load COMPSs/release" >> ~/.bashrc

Log out and back in again to check that the file has been correctly edited. The next listing shows an example of
the output generated by well loaded COMPSs installation.

$ exit

$ ssh USER@SC

load java/1 .8.0u66 (PATH, MANPATH, JAVA_HOME, JAVA_ROOT, JAVA_BINDIR,
SDK_HOME, JDK_HOME, JRE_HOME)

load MKL/11.0.1 (LD_LIBRARY_PATH)

load PYTHON/2.7.3 (PATH, MANPATH, LD_LIBRARY_PATH, C_INCLUDE_PATH)

load COMPSs/release (PATH, MANPATH, COMPSS_HOME)

USER@SC$ enqueue_compss --version
COMPSs version <version>

Important: Please remember that PyCOMPSs uses Python 2.7 by default. In order to use Python 3, the Python
2.7 module must be unloaded after loading COMPSs module, and then load the Python 3 module.

COMPSs Job submission

COMPSs jobs can be easily submited by running the enqueue compss command. This command allows to
configure any runcompss (Runcompss command) option and some particular queue options such as the queue
system, the number of nodes, the wallclock time, the master working directory, the workers working directory and
number of tasks per node.

Next, we provide detailed information about the enqueue_compss command:

$ enqueue_compss -h

(continues on next page)

142 Chapter 5. Execution Environments

COMPSs Documentation, 2.9

(continued from previous page)

Usage: /apps/COMPSs/2.9/Runtime/scripts/user/enqueue_compss [queue_system_options] [COMPSs_
—options] application_name application_arguments

* Options:
General:
--help, -h
--heterogeneous

Queue system configuration:
--sc_cfg=<name>
—exist inside queues/cfgs/

Submission configuration:
General submision arguments:
--exec_time=<minutes>
—minutes)

--job_name=<name>

--queue=<name>
—queue system.

—interactive
--reservation=<name>

--env_script=<path/to/script>
—application.

--extra_submit_flag=<flag>
—default command flags.
--cpus_per_task
—allocate per task.
—in a worker node and

—node respectively.

--job_dependency=<jobID>
—has ended.

--forward_time_limit=<true|false>
—runtime.
--storage_home=<string>
—implementation
--storage_props=<string>
Agents deployment arguments:

--agents=<string>
—values: plain|tree

Print this help message
Indicates submission is going to be heterogeneous
Default: Disabled

SuperComputer configuration file to use. Must

Default: default

Expected execution time of the application (in,

Default: 10

Job name

Default: COMPSs

Queue name to submit the job. Depends on the

For example (MN3): bsc_cs | bsc_debug | debug |,

Default: default

Reservation to use when submitting the job.
Default: disabled

Script to source the required environment for they

Default: Empty
Flag to pass queue system flags not supported by,

Spaces must be added as '#'

Default: Empty

Number of cpus per task the queue system musty
Note that this will be equal to the cpus_per_node

equal to the worker_in_master_cpus in a mastery

Default: false
Postpone job execution until the job dependency,

Default: None
Forward the queue system time limit to they

It will stop the application in a controlled way.
Default: true
Root installation dir of the storage

Default: null
Absolute path of the storage properties file

Mandatory if storage_home is defined

Hierarchy of agents for the deployment. Accepted,

(continues on next page)

5.1. Master-Worker Deployments

143

COMPSs Documentation, 2.9

(continued from previous page)

--agents
—classic Master-Worker deployment.

Homogeneous submission arguments:
--num_nodes=<int>

--num_switches=<int>
—~for no restrictions.

Heterogeneous submission arguments:
--type_cfg=<file_location>
—node type requests

--master=<master_node_type>
—type_cfg flag)
--workers=type_X:nodes,type_Y:nodes
—workers
—type_cfg flag)

Launch configuration:
--cpus_per_node=<int>
--gpus_per_node=<int>
--fpgas_per_node=<int>

--io_executors=<int>

--fpga_reprogram="<string>
—executed to reprogram the FPGA with

—absolute path.

--max_tasks_per_node=<int>
—node

--node_memory=<MB>
--node_storage_bandwidth=<MB>

--network=<name>
—ethernet | infiniband | data.

Default: tree
Deploys the runtime as agents instead of they

Default: disabled

Number of nodes to use
Default: 2
Maximum number of different switches. Select O,

Maximum nodes per switch: 18
Only available for at least 4 nodes.
Default: O

Location of the file with the descriptions of,

File should follow the following format:
type_XO{

cpus_per_node=24

node_memory=96

}
type_YO{

b
Node type for the master
(Node type descriptions are provided in the --

Node type and number of nodes per type for they,

(Node type descriptions are provided in the --

Available CPU computing units on each node
Default: 32

Available GPU computing units on each node
Default: O

Available FPGA computing units on each node
Default:

Number of I0 executors on each node
Default: O

Specify the full command that needs to be,

the desired bitstream. The location must be ang

Default:
Maximum number of simultaneous tasks running on a

Default: -1

Maximum node memory: disabled | <int> (MB)
Default: disabled

Maximum node storage bandwidth: <int> (MB)
Default:

Communication network for transfers: default |,

(continues on next page)

144

Chapter 5. Execution Environments

COMPSs Documentation, 2.9

(continued from previous page)

--prolog="<string>"
—the quotes)

—rather than spaces.
—than one prolog action

--epilog="<string>"
—application (Notice the quotes)

—rather than spaces.

—than one epilog action
--master_working_dir=<path>
--worker_working_dir=<name | path>

H<path>

--worker_in_master_cpus=<int>

Default: ethernet
Task to execute before launching COMPSs (Notice
If the task has arguments split them by ",",

This argument can appear multiple times for morej

Default: Empty
Task to execute after executing the COMPSs,

If the task has arguments split them by ",",

This argument can appear multiple times for morej
Default: Empty

Working directory of the application

Default:

Worker directory. Use: local_disk | shared_disk |

Default: local_disk

Maximum number of CPU computing units that they

—master node can run as worker. Cannot exceed cpus_per_node.

--worker_in_master_memory=<int> MB
—worker. Cannot exceed the node_memory.

--worker_port_range=<min>,<max>
—side

--jvm_worker_in_master_opts="<string>"
—the Master Node.

—spaces (Notice the quotes)

--container_image=<path>
—engine image

--container_compss_path=<path>
—image

--container_opts="<string>"

--elasticity=<max_extra_nodes>
—nodes (ONLY AVAILABLE FORM SLURM CLUSTERS

--automatic_scaling=<bool>
— (for elasticity)

--jupyter_notebook=<path>,

—jupyter notebook from the specified path.
--jupyter_notebook
--ipython

Default: O
Maximum memory in master node assigned to the,

Mandatory if worker_in_master_cpus is specified.
Default: disabled
Port range used by the NIO adaptor at the worker

Default: 43001,43005
Extra options for the JVM of the COMPSs Worker in

Each option separed by "," and without blank

Default:
Runs the application by means of a containery

Default: Empty
Path where compss is installed in the container,

Default: /opt/COMPSs

Options to pass to the container engine

Default: empty

Activate elasticity specifiying the maximum extrag
WITH NIO ADAPTOR)

Default: O

Enable or disable the runtime automatic scalingy,

Default: true
Swap the COMPSs master initialization with,

Default: false
Swap the COMPSs master initialization withy

SIpythom.

(continues on next page)

5.1. Master-Worker Deployments

145

COMPSs Documentation, 2.9

(continued from previous page)

Runcompss configuration:

Tools enablers:
--graph=<bool>, --graph, -g

Default: empty

Generation of the complete graph (true/false)
When no value is provided it is set to true
Default: false

--tracing=<level>, --tracing, -t Set generation of traces and/or tracing level ([,
—true | basic] | advanced | scorep | arm-map | arm-ddt | false)
True and basic levels will produce the samey
—traces.
When no value is provided it is set to 1
Default: O
--monitoring=<int>, --monitoring, -m Period between monitoring samples (milliseconds)

--external_debugger=<int>,
--external_debugger
—specified port (or 9999 if empty)

--jmx_port=<int>

Runtime configuration options:
--task_execution=<compss|storage>

--storage_impl=<string>

When no value is provided it is set to 2000
Default: O

Enables external debugger connection on they
Default: false

Enable JVM profiling on specified port

Task execution under COMPSs or Storage.
Default: compss
Path to an storage implementation. Shortcut toy

—setting pypath and classpath. See Runtime/storage in your installation folder.

--storage_conf=<path>
--project=<path>

—projects/default_project.xml
--resources=<path>

—resources/default_resources.xml
--lang=<name>

--summary
—the application execution

--log_level=<level>, --debug, -d
—trace

—disabling asserts and __debug__
Advanced options:
--extrae_config_file=<path>

—shared disk between all COMPSs workers.

--extrae_config_file_python=<path>

Path to the storage configuration file

Default: null

Path to the project XML file

Default: /opt/COMPSs//Runtime/configuration/xml/

Path to the resources XML file
Default: /opt/COMPSs//Runtime/configuration/xml/

Language of the application (java/c/python)
Default: Inferred is possible. Otherwise: java

Displays a task execution summary at the end ofy

Default: false
Set the debug level: off | info | api | debug |

Warning: Off level compiles with -02 optiony

Default: off

Sets a custom extrae config file. Must be in aj

Default: null
Sets a custom extrae config file for python. Musty

—be in a shared disk between all COMPSs workers.

Default: null

(continues on next page)

146

Chapter 5. Execution Environments

COMPSs Documentation, 2.9

(continued from previous page)

--trace_label=<string>

—used in the case of tracing is activated.

--comm=<ClassName>
—communications

--conn=<className>
—the cloud
—DefaultSSHConnector
—DefaultNoSSHConnector
—DefaultSSHConnector
--streaming=<type>
--streaming_master_name=<str>
--streaming_master_port=<int>

--scheduler=<className>

Add a label in the generated trace file. Only

Default: None
Class that implements the adaptor for,

Supported adaptors:
es.bsc.compss.nio.master.NIOAdaptor
es.bsc.compss.gat.master.GATAdaptor

Default: es.bsc.compss.nio.master.NIOAdaptor

Class that implements the runtime connector for

Supported connectors:
es.bsc.compss.connectors.

L— es.bsc.compss.connectors.
Default: es.bsc.compss.connectors.

Enable the streaming mode for the given type.
Supported types: FILES, OBJECTS, PSCOS, ALL, NONE
Default: NONE
Use an specific streaming master node name.
Default: null
Use an specific port for the streaming master.
Default: null
Class that implements the Scheduler for COMPSs
Supported schedulers:

F—— es.bsc.compss.scheduler.

—fifodatalocation.FIFODatalLocationScheduler

—FIFOScheduler

—FIFODataScheduler

—LIFOScheduler

—TaskScheduler

—LoadBalancingScheduler

—LoadBalancingScheduler
--scheduler_config_file=<path>

—configuration.

--library_path=<path>

—(e.g. Java JVM library, Python library, C

--classpath=<path>
--appdir=<path>

--pythonpath=<path>
—PYTHONPATH

--env_script=<path>

—environment variables are defined.

F—— es.bsc.compss.scheduler.fifonew.

F—— es.bsc.compss.scheduler.fifodatanew.

F—— es.bsc.compss.scheduler.lifonew.

F—— es.bsc.compss.components.impl.

L es.bsc.compss.scheduler.loadbalancing.
Default: es.bsc.compss.scheduler.loadbalancing.
Path to the file which contains the scheduler

Default: Empty

Non-standard directories to search for libraries
binding library)

Default: Working Directory

Path for the application classes / modules
Default: Working Directory

Path for the application class folder.

Default: /home/user

Additional folders or paths to add to they

Default: /home/user
Path to the script file where the application

(continues on next page)

5.1. Master-Worker Deployments

147

COMPSs Documentation, 2.9

(continued from previous page)

COMPSs sources this script before running they
—application.
Default: Empty
--base_log_dir=<path> Base directory to store COMPSs log files (a .
—COMPSs/ folder will be created inside this location)
Default: User home
--specific_log_dir=<path> Use a specific directory to store COMPSs logy,
—files (no sandbox is created)
Warning: Overwrites --base_log_dir option
Default: Disabled

--uuid=<int> Preset an application UUID
Default: Automatic random generation
--master_name=<string> Hostname of the node to run the COMPSs master
Default:
--master_port=<int> Port to run the COMPSs master communications.

Only for NIO adaptor
Default: [43000,44000]

--jvm_master_opts="<string>" Extra options for the COMPSs Master JVM. Eachy
—option separed by "," and without blank spaces (Notice the quotes)
Default:
--jvm_workers_opts="<string>" Extra options for the COMPSs Workers JVMs. Each,

—option separed by "," and without blank spaces (Notice the quotes)
Default: -Xms1024m,-Xmx1024m,-Xmn400m
--cpu_affinity="<string>" Sets the CPU affinity for the workers
Supported options: disabled, automatic, usery
—defined map of the form "0-8/9,10,11/12-14,15,16"
Default: automatic
--gpu_affinity="<string>" Sets the GPU affinity for the workers
Supported options: disabled, automatic, usery
—defined map of the form "0-8/9,10,11/12-14,15,16"
Default: automatic
--fpga_affinity="<string>" Sets the FPGA affinity for the workers
Supported options: disabled, automatic, usery
—defined map of the form "0-8/9,10,11/12-14,15,16"
Default: automatic
--fpga_reprogram="<string>" Specify the full command that needs to bey
—executed to reprogram the FPGA with the desired bitstream. The location must be an absolute,
—path.

Default:
--io_executors=<int> I0 Executors per worker
Default: O
--task_count=<int> Only for C/Python Bindings. Maximum number of,
—different functions/methods, invoked from the application, that have been selected as tasks
Default: 50
--input_profile=<path> Path to the file which stores the input

—application profile
Default: Empty
--output_profile=<path> Path to the file to store the application profile
—at the end of the execution
Default: Empty
--PyObject_serialize=<bool> Only for Python Binding. Enable the object,,
—serialization to string when possible (true/false).
Default: false
--persistent_worker_c=<bool> Only for C Binding. Enable the persistent workery
—in ¢ (true/false).
Default: false

(continues on next page)

148 Chapter 5. Execution Environments

COMPSs Documentation, 2.9

(continued from previous page)

--enable_external_adaptation=<bool> Enable external adaptation. This option will
—disable the Resource Optimizer.
Default: false

--gen_coredump Enable master coredump generation
Default: false
--keep_workingdir Do not remove the worker working directory aftery

—the execution
Default: false
--python_interpreter=<string> Python interpreter to use (python/python2/
—python3) .
Default: python Version:
--python_propagate_virtual_environment=<true> Propagate the master virtual environment,
—to the workers (true/false).
Default: true
--python_mpi_worker=<false> Use MPI to run the python worker instead of
—multiprocessing. (true/false).
Default: false

--python_memory_profile Generate a memory profile of the master.
Default: false
--python_worker_cache=<string> Python worker cache (true/size/false).

Only for NIO without mpi worker and python >= 3.8.
Default: false

--wall_clock_limit=<int> Maximum duration of the application (in seconds).
Default: O

* Application name:
For Java applicatiomns: Fully qualified name of the application
For C applications: Path to the master binary
For Python applications: Path to the .py file containing the main program

* Application arguments:
Command line arguments to pass to the application. Can be empty.

Tip: For further information about applications scheduling refer to Schedulers.

Attention: From COMPSs 2.8 version, the worker_working_dir has changed its built-in values to be more
generic. The current values are: local_disk which substitutes the former scratch value; and shared_disk
which replaces the gpfs value.

Walltime

As with the runcompss command, the enqueue_compss command also provides the --wall_clock_limit for the
users to specify the maximum execution time for the application (in seconds). If the time is reached, the execution
is stopped.

Do not confuse with --exec_time, since exec_time indicates the walltime for the queuing system, whilst wall_-
clock_limit is for COMPSs. Consequently, if the exec_time is reached, the queuing system will arise an exception
and the execution will be stopped suddenly (potentially causing loose of data). However, if the wall_clock_limit
is reached, the COMPSs runtime stops and grabs all data safely.

Tip: It is a good practice to define the --wall_clock_limit with less time than defined for --exec_time, so

5.1. Master-Worker Deployments 149

COMPSs Documentation, 2.9

that the COMPSs runtime can stop the execution safely and ensure that no data is lost.

PyCOMPSs within interactive jobs

PyCOMPSs can be used in interactive jobs through the use of ipython. To this end, the first thing is to request
an interactive job. For example, an interactive job with Slurm for one node with 48 cores (as in MareNostrum 4)
can be requested as follows:

$ salloc --qos=debug -N1 -n48

salloc: Pending job allocation 12189081

salloc: job 12189081 queued and waiting for resources
salloc: job 12189081 has been allocated resources
salloc: Granted job allocation 12189081

salloc: Waiting for resource configuration

salloc: Nodes s02r2b27 are ready for job

When the job starts running, the terminal directly opens within the given node.

Then, it is necessary to start the COMPSs infrastructure in the given nodes. To this end, the following command
will start one worker with 24 cores (default worker in master), and then launch the ipython interpreter:

$ launch_compss \
--sc_cfg=mn.cfg \
--master_node="$SLURMD_NODENAME" \

--worker_nodes="" \
--ipython \
--pythonpath=$ (pwd) \
n dumy n

Note that the launch_compss command requires the supercomputing configuration file, which in the MareNostrum
4 case is mn.cfg (more information about the supercomputer configuration can be found in Configuration Files).
In addition, requires to define which node is going to be the master, and which ones the workers (if none, takes
the default worker in master). Finally, the —ipython flag indicates that use ipython is expected.

When ipython is started, the COMPSs infrastructure is ready, and the user can start running interactive commands
considering the PyCOMPSs API for jupyter notebook (see Jupyter API calls).

5.1.2.2 MareNostrum 4

Basic queue commands

The MareNostrum supercomputer uses the SLURM (Simple Linux Utility for Resource Management) workload
manager. The basic commands to manage jobs are listed below:

e sbatch Submit a batch job to the SLURM system
e scancel Kill a running job
e squeue -u <username> See the status of jobs in the SLURM queue

For more extended information please check the SLURM: Quick start user guide at https://slurm.schedmd.com/
quickstart.html .

150 Chapter 5. Execution Environments

https://slurm.schedmd.com/quickstart.html
https://slurm.schedmd.com/quickstart.html

COMPSs Documentation, 2.9
Tracking COMPSs jobs
When submitting a COMPSs job a temporal file will be created storing the job information. For example:
$ enqueue_compss \
--exec_time=15 \
--num_nodes=3 \
--cpus_per_node=16 \
--master_working_dir=. \
--worker_working_dir=shared_disk \
--lang=python \
--log_level=debug \
<APP> <APP_PARAMETERS>
SC Configuration: default.cfg
Queue: default
Reservation: disabled
Num Nodes: 3
Num Switches: 0
GPUs per node: 0
Job dependency: None
Exec-Time: 00:15
Storage Home: null
Storage Properties: null
Other:
--sc_cfg=default.cfg
--cpus_per_node=48
--master_working_dir=.
--worker_working_dir=shared_disk
--lang=python
--classpath=.
--library_path=.
--comm=es.bsc.compss.nio.master.NIOAdaptor
--tracing=false
--graph=false
--pythonpath=.
<APP> <APP_PARAMETERS>
Temp submit script is: /scratch/tmp/tmp.pBG5yfFxEo
$ cat /scratch/tmp/tmp.pBG5yfFxEo
#!/bin/bash
#
#SBATCH --job-name=COMPSs
#SBATCH --workdir=.
#SBATCH -o compss-%J.out
#SBATCH -e compss-%J.err
#SBATCH -N 3
#SBATCH -n 144
#SBATCH --exclusive
#SBATCH -t00:15:00
In order to track the jobs state users can run the following command:
$ squeue
JOBID PARTITION NAME USER TIME_LEFT TIME_LIMIT START_TIME ST NODES CPUS NODELIST
474130 main COMPSs XX 0:15:00 0:15:00 N/A PD 3 144 -
5.1. Master-Worker Deployments 151

COMPSs Documentation, 2.9

The specific COMPSs logs are stored under the ~/.COMPSs/ folder; saved as a local runcompss execution. For
further details please check the Ezecuting COMPSs applications Section.

5.1.2.3 MinoTauro

Basic queue commands

The MinoTauro supercomputer uses the SLURM (Simple Linux Utility for Resource Management) workload man-
ager. The basic commands to manage jobs are listed below:

e sbatch Submit a batch job to the SLURM system
e scancel Kill a running job
e squeue -u <username> See the status of jobs in the SLURM queue

For more extended information please check the SLURM: Quick start user guide at https://slurm.schedmd.com/
quickstart.html .

Tracking COMPSs jobs

When submitting a COMPSs job a temporal file will be created storing the job information. For example:

$ enqueue_compss \
--exec_time=15 \
--num_nodes=3 \
--cpus_per_node=16 \
--master_working_dir=. \
--worker_working_dir=shared_disk \
--lang=python \
--log_level=debug \
<APP> <APP_PARAMETERS>

SC Configuration: default.cfg
Queue: default
Reservation: disabled
Num Nodes: 3

Num Switches: 0

GPUs per node: 0

Job dependency: None
Exec-Time: 00:15
Storage Home: null
Storage Properties: null
Other:

--sc_cfg=default.cfg
--cpus_per_node=16
--master_working_dir=.
--worker_working_dir=shared_disk
--lang=python
--classpath=.
--library_path=.
--comm=es.bsc.compss.nio.master.NIOAdaptor
--tracing=false
--graph=false
--pythonpath=.
<APP> <APP_PARAMETERS>

Temp submit script is: /scratch/tmp/tmp.pBG5yfFxEo

(continues on next page)

152 Chapter 5. Execution Environments

https://slurm.schedmd.com/quickstart.html
https://slurm.schedmd.com/quickstart.html

COMPSs Documentation, 2.9

(continued from previous page)

$ cat /scratch/tmp/tmp.pBG5yfFxEo
#!/bin/bash

#

#SBATCH --job-name=COMPSs
#SBATCH --workdir=.
#SBATCH -o compss-%J.out
#SBATCH -e compss-%J.err
#SBATCH -N 3

#SBATCH -n 48

#SBATCH --exclusive
#SBATCH -t00:15:00

In order to trac the jobs state users can run the following command:

$ squeue
JOBID PARTITION NAME USER ST TIME NODES NODELIST (REASON)
XXXX projects COMPSs XX R 00:02 3 nvb[6-8]

The specific COMPSs logs are stored under the ~/.COMPSs/ folder; saved as a local runcompss execution. For
further details please check the Ezecuting COMPSs applications Section.

5.1.2.4 Nord 3

Basic queue commands

The Nord3 supercomputer uses the LSF (Load Sharing Facility) workload manager. The basic commands to
manage jobs are listed below:

bsub Submit a batch job to the LSF system
bkill Kill a running job

bjobs See the status of jobs in the LSF queue
bqueues Information about LSF batch queues

For more extended information please check the IBM Platform LSF Command Reference at https://www.ibm.
com/support/knowledgecenter/en/SSETD4 9.1.2/lsf ke cmd_ref.html .

Tracking COMPSs jobs

When submitting a COMPSs job a temporal file will be created storing the job information. For example:

$ enqueue_compss \
--exec_time=15 \
--num_nodes=3 \
--cpus_per_node=16 \
--master_working_dir=. \
--worker_working_dir=shared_disk \
--lang=python \
--log_level=debug \
<APP> <APP_PARAMETERS>

SC Configuration: default.cfg
Queue: default

(continues on next page)

5.1. Master-Worker Deployments 153

https://www.ibm.com/support/knowledgecenter/en/SSETD4_9.1.2/lsf_kc_cmd_ref.html
https://www.ibm.com/support/knowledgecenter/en/SSETD4_9.1.2/lsf_kc_cmd_ref.html

COMPSs Documentation, 2.9

(continued from previous page)

Reservation: disabled
Num Nodes: 3

Num Switches: 0

GPUs per node: 0

Job dependency: None
Exec-Time: 00:15
Storage Home: null
Storage Properties: null
Other:

--sc_cfg=default.cfg
--cpus_per_node=16
--master_working_dir=.
--worker_working_dir=shared_disk
--lang=python
--classpath=.
--library_path=.
--comm=es.bsc.compss.nio.master.NIOAdaptor
--tracing=false
--graph=false
--pythonpath=.
<APP> <APP_PARAMETERS>

Temp submit script is: /scratch/tmp/tmp.pBG5yfFxEo

$ cat /scratch/tmp/tmp.pBG5yfFxEo
#!/bin/bash

#
#BSUB -J COMPSs
#BSUB -cwd .

#BSUB -oo0 compss-%J.out
#BSUB -eo compss-%J.err
#BSUB -n 3

#BSUB -R "span[ptile=1]"
#BSUB -W 00:15

In order to trac the jobs state users can run the following command:

$ bjobs
JOBID USER STAT QUEUE FROM_HOST EXEC_HOST JOB_NAME SUBMIT_TIME
XXXX bscXX PEND XX logini XX COMPSs Month Day Hour

The specific COMPSs logs are stored under the ~/.COMPSs/ folder; saved as a local runcompss execution. For
further details please check the Ezecuting COMPSs applications Section.

5.1.2.5 Enabling COMPSs Monitor

Configuration

As supercomputer nodes are connection restricted, the better way to enable the COMPSs Monitor is from the
users local machine. To do so please install the following packages:

o COMPSs Runtime
o COMPSs Monitor
o sshfs

For further details about the COMPSs packages installation and configuration please refer to Installation and
Administration Section. If you are not willing to install COMPSs in your local machine please consider to download

154 Chapter 5. Execution Environments

COMPSs Documentation, 2.9

our Virtual Machine available at our webpage.

Once the packages have been installed and configured, users need to mount the sshfs directory as follows. The
SC_USER stands for your supercomputer’s user, the SC_ENDPOINT to the supercomputer’s public endpoint and the
TARGET_LOCAL_FOLDER to the local folder where you wish to deploy the supercomputer files):

compss@bsc:~$ scp $HOME/.ssh/id_rsa.pub ${SC_USER}@mnl.bsc.es:~/id_rsa_local.pub
compss@bsc:~$ ssh SC_USERQ@SC_ENDPOINT \
"cat “/id_rsa_local.pub >> ~/.ssh/authorized_keys; \
rm ~/id_rsa_local.pub"
compss@bsc:~$ mkdir -p TARGET_LOCAL_FOLDER/.COMPSs
compss@bsc:~$ sshfs -o IdentityFile=$HOME/.ssh/id_rsa -o allow_other \
SC_USERQSC_ENDPOINT:~/.COMPSs \
TARGET_LOCAL_FOLDER/ .COMPSs

Whenever you wish to unmount the sshfs directory please run:

compss@bsc:~$ sudo umount TARGET_LOCAL_FOLDER/.COMPSs

Execution

Access the COMPSs Monitor through its webpage (http://localhost:8080/compss-monitor by default) and log in
with the TARGET_LOCAL_FOLDER to enable the COMPSs Monitor for MareNostrum.

Please remember that to enable all the COMPSs Monitor features applications must be ran with the -m flag. For
further details please check the Ezxecuting COMPSs applications Section.

Figure 19 illustrates how to login and Figure 20 shows the COMPSs Monitor main page for an application run
inside a Supercomputer.

€ G X\ X
€ = C f [localhost:8080/compss-monitor/zullogin.zul Wi © =
Barcelona
Supercomputing
Center —_—

Centro Nacional de Supercomputacion

COMPSs Monitor Login

Usemame - | fhome/compss/MN3L.COMPSsf

Lagin with the UNIX username or the absolute path of .COMPSs folder you wish to monitor.
Leave in blank for default configuration values.

Login

Figure 19: COMPSs Monitor login for Supercomputers

5.1. Master-Worker Deployments 155

http://localhost:8080/compss-monitor

COMPSs Documentation, 2.9

Barcelona FAQ Configuration Logout
Supercomputing COMPSS MONITOR
Center —

Centro Nacional de Supercomputacion

Applications Resources information | Tasks information | Currenttasks graph | Complete tasks graph | Load chart | Runtimelog | Execution Information | Statisties

© 2435288
status Resource Name ©PU Computing Units | GPU Computing Units | FPGA Computing Units | OTHER Computing Units | Memory Size Disk Size | Provider Image Running Actions.

et 195 203 387 395 355 443

@ waares s : mocs o

(3) S042680 1 . 28008 B

363 427 435 371 419

226 210 218 275 315 209 330 307 283 259 267 331 243 251 235
202

Figure 20: COMPSs Monitor main page for a test application at Supercomputers

5.1.3 Docker

5.1.3.1 What is Docker?

Docker is an open-source project that automates the deployment of applications inside software containers, by
providing an additional layer of abstraction and automation of operating-system-level virtualization on Linux. In
addition to the Docker container engine, there are other Docker tools that allow users to create complex applications
(Docker-Compose) or to manage a cluster of Docker containers (Docker Swarm).

COMPSs supports running a distributed application in a Docker Swarm cluster.

5.1.3.2 Requirements

In order to use COMPSs with Docker, some requirements must be fulfilled:

e Have Docker and Docker-Compose installed in your local machine.

e Have an available Docker Swarm cluster and its Swarm manager ip and port to access it remotely.

e A Dockerhub account. Dockerhub is an online repository for Docker images. We don’t currently support
another sharing method besides uploading to Dockerhub, so you will need to create a personal account. This
has the advantage that it takes very little time either upload or download the needed images, since it will
reuse the existing layers of previous images (for example the COMPSs base image).

5.1.3.3 Execution in Docker

The runcompss-docker execution workflow uses Docker-Compose, which is in charge of spawning the different
application containers into the Docker Swarm manager. Then the Docker Swarm manager schedules the containers
to the nodes and the application starts running. The COMPSs master and workers will run in the nodes Docker
Swarm decides. To see where the masters and workers are located in runtime, you can use:

$ docker -H '<swarm_manager_ip:swarm_port>' ps -a

The execution of an application using Docker containers with COMPSs consists of 2 steps:

156 Chapter 5. Execution Environments

COMPSs Documentation, 2.9

Execution step 1: Creation of the application image

The very first step to execute a COMPSs application in Docker is creating your application Docker image.

This must be done only once for every new application, and then you can run it as many times as needed. If the
application is updated for whatever reason, this step must be done again to create and share the updated image.

In order to do this, you must use the compss docker gen image tool, which is available in the standard
COMPSs application. This tool is the responsible of taking your application, create the needed image, and upload
it to Dockerhub to share it.

The image is created injecting your application into a COMPSs base image. This base image is available in
Dockerhub. In case you need it, you can pull it using the following command:

$ docker pull compss/compss

The compss _docker gen image script receives 2 parameters:

--c, --context-dir Specifies the context directory path of the application. This path MUST
BE ABSOLUTE, not relative. The context directory is a local directory that
must contain the needed binaries and input files of the app (if any).
In its simplest case, it will contain the executable file (a .jar for example). Keep
the context-directory as lightest as possible.

For example: —context-dir=’/home/compss-user/my-app-dir’ (where
'my-app-dir’ contains ’app.jar’, 'datal.dat’ and ’data2.csv’). For more details,
this context directory will be recursively copied into a COMPSs base image.
Specifically, it will create all the path down to the context directory inside the
image.

--image-name Specifies a name for the created image. It MUST have this format:
'DOCKERHUB-USERNAME /image-name’. The DOCKERHUB_USERNAME
must be the username of your personal Dockerhub account. The image name
can be whatever you want, and will be used as the identifier for the image in
Dockerhub. This name will be the one you will use to execute the application
in Docker. For example, if my Dockerhub username is johnl123 and I want my

—c¢

image to be named “my-image-app”: --image-name=‘‘john123/my-image-app’’.

As stated before, this is needed to share your container application image with
the nodes that need it. Image tags are also supported (for example “john123/my-
image-app:1.23).

Important: After creating the image, be sure to write down the absolute context-directory and the absolute
classpath (the absolute path to the executable jar). You will need it to run the application using runcompss-docker.
In addition, if you plan on distributing the application, you can use the Dockerhub image’s information tab to
write them, so the application users can retrieve them.

Execution step 2: Run the application

To execute COMPSs in a Docker Swarm cluster, you must use the runcompss-docker command, instead of
runcompss.

The command runcompss-docker has some additional arguments that will be needed by COMPSs to run
your application in a distributed Docker Swarm cluster environment. The rest of typical arguments (classpath for
example) will be delegated to runcompss command.

These additional arguments must go before the typical runcompss arguments. The runcompss-docker additional
arguments are:

5.1. Master-Worker Deployments 157

COMPSs Documentation, 2.9

--w, --worker-containers Specifies the number of worker containers the app will execute on.
One more container will be created to host the master. If you have enough nodes
in the Swarm cluster, each container will be executed by one node. This is the de-
fault schedule strategy used by Swarm. For example: --worker-containers=3

--s, --swarm-manager Specifies the Swarm manager ip and port (format: ip:port). For example:
--swarm-manager=’129.114.108.8:4000°

--i, --image-name Specify the image name of the application image in Dockerhub. Remem-
ber you must generate this with compss docker gen image Remember as
well that the format must be: 'DOCKERHUB USERNAME/APP IMAGE -
NAME:TAG’ (the :TAG is optional). For example: --image-name=’john123/
my-compss-application:1.9’

--c, --context-dir Specifies the context directory of the app. It must be specified by the ap-
plication image provider. For example: --context-dir=’/home/compss-user/
my-app-context-dir’

As optional arguments:

--c-cpu-units Specifies the number of cpu units used by each container (default value is 4). For
example: *--c-cpu-units:=16

--c-memory Specifies the physical memory used by each container in GB (default value is 8
GB). For example, in this case, each container would use as maximum 32 GB of
physical memory: --c-memory=32

Here is the format you must use with runcompss-docker command:

$ runcompss-docker --worker-containers=N \
--swarm-manager='<ip>:<port>' \
--image-name='DOCKERHUB_USERNAME/image_name' \
--context-dir='CTX_DIR' \
[rest of classic runcompss args]

Or alternatively, in its shortest form:

$ runcompss-docker --w=N --s='<ip>:<port>' --i='DOCKERHUB_USERNAME/image_name' --c='CTX_DIR' \
[rest of classic runcompss args]

5.1.3.4 Execution with TLS

If your cluster uses TLS or has been created using Docker-Machine, you will have to export two environment
variables before using runcompss-docker:

On one hand, DOCKER_ TLS VERIFY environment variable will tell Docker that you are using TLS:

export DOCKER_TLS_VERIFY="1"

On the other hand, DOCKER CERT PATH variable will tell Docker where to find your TLS certificates. As
an example:

export DOCKER_CERT_PATH="/home/compss-user/.docker/machine/machines/my-manager-node"

In case you have created your cluster using docker-machine, in order to know what your DOCKER CERT PATH
is, you can use this command:

$ docker-machine env my-swarm-manager-node-name | grep DOCKER_CERT_PATH

In which swarm-manager-node-name must be changed by the name docker-machine has assigned to your swarm
manager node. With these environment variables set, you are ready to use runcompss-docker in a cluster using
TLS.

158 Chapter 5. Execution Environments

COMPSs Documentation, 2.9

5.1.3.5 Execution results

The execution results will be retrieved from the master container of your application.

If your context-directory name is ‘matmul’, then your results will be saved in the matmul-results’ directory,
which will be located in the same directory you executed runcompss-docker on.

Inside the matmul-results’ directory you will have:

e A folder named matmul’ with all the result files that were in the same directory as the executable when
the application execution ended. More precisely, this will contain the context-directory state right after
finishing your application execution. Additionally, and for more advanced debug purposes, you will have
some intermediate files created by runcompss-docker (Dockerfile, project.xml, resources.xml), in case you
want to check for more complex errors or details.

e A folder named ’debug’, which (in case you used the runcompss debug option (-d)), will contain the
’.COMPSSs’ directory, which contains another directory in which there are the typical debug files runtime.log,
jobs, etc. Remember .COMPSs is a hidden directory, take this into account if you do ls inside the debug
directory (add the -a option).

To make it simpler, we provide a tree visualization of an example of what your directories should look like after
the execution. In this case we executed the Matmul example application that we provide you:

matmul
L— matmul.jar
matmul-results
[— debug
L— .compss
L— matmul.files.Matmul_61
jobs
jobl _NEW.err
job1_NEW.out
job2_NEW.err
job2_NEW.out
Jjob3_NEW.err
Jjob3_NEW.out
resources.log
runtime.log
tmpFiles

— matmul

W > > >
[<R-R-NoRol
rONR O

B.0.2
Dockerfile
matmul.jar
project.xml
resources.xml

Figure 21: Result and log folders of a Matmul execution with COMPSs and Docker

5.1.3.6 Execution examples

Next we will use the Matmul application as an example of a Java application running with COMPSs and Docker.

Imagine we have our Matmul application in /home/john/matmul and inside the matmul directory we only have the
file matmul. jar.

We have created a Dockerhub account with username ’john123’.

The first step will be creating the image:

$ compss_docker_gen_image --context-dir='/home/john/matmul' \
--image-name='john123/matmul-example’

Now, we write down the context-dir (/home/john/matmul) and the classpath (/home/john/matmul/matmul. jar).
We do this because they will be needed for future executions. Since the image is created and uploaded, we won’t
need to do this step anymore.

Now we are going to execute our Matmul application in a Docker cluster.
Take as assumptions:

e We will use 5 worker docker containers.

5.1. Master-Worker Deployments 159

COMPSs Documentation, 2.9

e The swarm-manager ip will be 129.114.108.8, with the Swarm manager listening to the port 4000.

e We will use debug (-d).

e Finally, as we would do with the typical runcompss, we specify the main class name and its parameters
(16 and 4 in this case).

In addition, we know from the former step that the image name is john123/matmul-example, the context direc-
tory is /home/john/matmul, and the classpath is /home/john/matmul/matmul.jar. And this is how you would
run runcompss-docker:

$ runcompss-docker --worker-containers=5 \
--swarm-manager="'129.114.108.8:4000" \
--context-dir="'/home/john/matmul' \
--image-name="'john123/matmul-example' \
--classpath=/home/john/matmul /matmul . jar \
-d \
matmul.objects.Matmul 16 4

Here we show another example using the short arguments form, with the KMeans example application, that is also
provided as an example COMPSs application to you:

First step, create the image once:

$ compss_docker_gen_image --context-dir='/home/laura/apps/kmeans’' \
--image-name='laura-67/my-kmeans'

And now execute with 30 worker containers, and Swarm located in '110.3.14.159:26535’.

$ runcompss-docker --w=30 \
--5="'110.3.14.159:26535"' \
--c='/home/laura/apps/kmeans' \
--image-name='laura-67/my-kmeans' \
--classpath=/home/laura/apps/kmeans/kmeans.jar \
kmeans.KMeans

5.1.4 Chameleon

5.1.4.1 What is Chameleon?

The Chameleon project is a configurable experimental environment for large-scale cloud research based on a
OpenStack KVM Cloud. With funding from the National Science Foundation (NSF), it provides a large-scale
platform to the open research community allowing them explore transformative concepts in deeply programmable
cloud services, design, and core technologies. The Chameleon testbed, is deployed at the University of Chicago
and the Texas Advanced Computing Center and consists of 650 multi-core cloud nodes, 5PB of total disk space,
and leverage 100 Gbps connection between the sites.

The project is led by the Computation Institute at the University of Chicago and partners from the Tezas Advanced
Computing Center at the University of Texas at Austin, the International Center for Advanced Internet Research
at Northwestern University, the Ohio State University, and University of Texas at San Antoni, comprising a highly
qualified and experienced team. The team includes members from the NSF supported FutureGrid project and
from the GENI community, both forerunners of the NSFCloud solicitation under which this project is funded.
Chameleon will also sets of partnerships with commercial and academic clouds, such as Rackspace, CERN and
Open Science Data Cloud (OSDC).

For more information please check https://www.chameleoncloud.org/ .

160 Chapter 5. Execution Environments

https://www.chameleoncloud.org/

COMPSs Documentation, 2.9

5.1.4.2 Execution in Chameleon

Currently, COMPSs can only handle the Chameleon infrastructure as a cluster (deployed inside a lease). Next, we
provide the steps needed to execute COMPSs applications at Chameleon:

e Make a lease reservation with 1 minimum node (for the COMPSs master instance) and a maximum number
of nodes equal to the number of COMPSs workers needed plus one

e Instantiate the master image (based on the published image COMPSs __ CC-CentOS7)

e Attach a public IP and login to the master instance (the instance is correctly contextualized for COMPSs
executions if you see a COMPSs login banner)

e Set the instance as COMPSs master by running /etc/init.d/chameleon_init start

e Copy your CH file (API credentials) to the Master and source it

e Run the chameleon_cluster_setup script and fill the information when prompted (you will be asked for
the name of the master instance, the reservation id and number of workers). This scripts may take several
minutes since it sets up the all cluster.

e FExecute your COMPSs applications normally using the runcompss script

As an example you can check this video https://www.youtube.com/watch?v=BrQ6anPHjAU performing a full
setup and execution of a COMPSs application at Chameleon.

5.1.5 Jupyter Notebook

5.1.5.1 Notebook execution

The jupyter notebook can be executed as a common Jupyter notebook by steps or the whole application.

Important: A message showing the failed task/s will pop up if an exception within them happens.

This pop up message will also allow you to continue the execution without PyCOMPSs, or to restart the COMPSs
runtime. Please, note that in the case of COMPSs restart, the tracking of some objects may be lost (will need to
be recomputed).

5.1.5.2 Notebook example

Sample notebooks can be found in the PyCOMPSs Notebooks Section.

5.1.5.3 Tips and Tricks

Tasks information

It is possible to show task related information with tasks_info function.

Previous user code

import pycompss.interactive as ipycompss
ipycompss.start (graph=True)

User code that calls tasks

Check the current tasks info
ipycompss.tasks_info()

ipycompss.stop(sync=True)

Subsequent code

5.1. Master-Worker Deployments 161

https://www.youtube.com/watch?v=BrQ6anPHjAU

COMPSs Documentation, 2.9

Important: The tasks information will not be displayed if the monitor option at ipycompss.start is not set
(to a refresh value).

The tasks_info function provides a widget that can be updated while running other cells from the notebook,
and will keep updating every second until stopped. Alternatively, it will show a snapshot of the tasks information
status if ipywidgets is not available.

The information displayed is composed by two plots: the left plot shows the average time per task, while the right
plot shows the amount of tasks. Then, a table with the specific number of number of executed tasks, maximum
execution time, mean execution time and minimum execution time, per task is shown.

Tasks status

It is possible to show task status (running or completed) tasks with the tasks_status function.

Previous user code

import pycompss.interactive as ipycompss
ipycompss.start (graph=True)

User code that calls tasks

Check the current tasks info
ipycompss.tasks_status()

ipycompss.stop(sync=True)

Subsequent code

Important: The tasks information will not be displayed if the monitor option at ipycompss.start is not set
(to a refresh value).

The tasks_status function provides a widget that can be updated while running other cells from the notebook,
and will keep updating every second until stopped. Alternatively, it will show a snapshot of the tasks status if
ipywidgets is not available.

The information displayed is composed by a pie chart and a table showing the number of running tasks, and the
number of completed tasks.

Resources status

It is possible to show resources status with the resources_status function.

Previous user code

import pycompss.interactive as ipycompss
ipycompss.start (graph=True)

User code that calls tasks

Check the current tasks info
ipycompss.resources_status()

ipycompss.stop(sync=True)

(continues on next page)

162 Chapter 5. Execution Environments

COMPSs Documentation, 2.9

(continued from previous page)

Subsequent code

Important: The tasks information will not be displayed if the monitor option at ipycompss.start is not set
(to a refresh value).

The resources_status function provides a widget that can be updated while running other cells from the note-
book, and will keep updating every second until stopped. Alternatively, it will show a snapshot of the resources
status if ipywidgets is not available.

The information displayed is a table showing the number of computing units, gpus, fpgas, other computing units,
amount of memory, amount of disk, status and actions.

Current task graph

It is possible to show the current task graph with the current_task_graph function.

Previous user code

import pycompss.interactive as ipycompss
ipycompss.start (graph=True)

User code that calls tasks

Check the current task graph
ipycompss. current_task_graph()

ipycompss.stop(sync=True)

Subsequent code

Important: The graph will not be displayed if the graph option at ipycompss.start is not set to true.

In addition, the current_task_graph has some options. Specifically, its full signature is:

current_task_graph(fit=False, refresh_rate=1, timeout=0)

Parameters:

fit Adjust the size to the available space in jupyter if set to true. Display full size if set to false
(default).

refresh_rate When timeout is set to a value different from 0, it defines the number of seconds between
graph refresh.

timeout Check the current task graph during the timeout value (seconds). During the timeout value,
it refresh the graph considering the refresh rate value. It can be stopped with the stop button of
Jupyter. Does not update the graph if set to 0 (default).

Caution: The graph can be empty if all pending tasks have been completed.

5.1. Master-Worker Deployments 163

COMPSs Documentation, 2.9

Complete task graph

It is possible to show the complete task graph with the complete_task_graph function.

Previous user code

import pycompss.interactive as ipycompss
ipycompss.start (graph=True)

User code that calls tasks

Check the current task graph
ipycompss.complete_task_graph()

ipycompss.stop(sync=True)

Subsequent code

Important: The graph will not be displayed if the graph option at ipycompss.start is not set to true.

In addition, the complete_task_graph has some options. Specifically, its full signature is:

complete_task_graph(fit=False, refresh_rate=1, timeout=0)

Parameters:

fit Adjust the size to the available space in jupyter if set to true. Display full size if set to false
(default).

refresh_rate When timeout is set to a value different from 0, it defines the number of seconds between
graph refresh.

timeout Check the current task graph during the timeout value (seconds). During the timeout value,
it refresh the graph considering the refresh rate value. It can be stopped with the stop button of
Jupyter. Does not update the graph if set to 0 (default).

Caution: The graph may be empty or raise an exception if the graph has not been updated by the runtime
(may happen if there are too few tasks). In this situation, stop the compss runtime (synchronizing the remaining
objects if intended to start the runtime afterwards) and try again.

5.2 Agents Deployments

Opposing to well-established deployments with an almost-static set of computing resources and hardly-varying
interconnection conditions such as a single-computer, a cluster or a supercomputer; dynamic infrastructures, like
Fog environments, require a different kind of deployment able to adapt to rapidly-changing conditions. Such
infrastructures are likely to comprise several mobile devices whose connectivity to the infrastructure is temporary.
When the device is within the network range, it joins an already existing COMPSs deployment and interacts with
the other resources to offload tasks onto them or viceversa. Eventually, the connectivity of that mobile device
could be disrupted to never reestablish. If the leaving device was used as a worker node, the COMPSs master
needs to react to the departure and reassign the tasks running on that node. If the device was the master node, it
should be able to carry on with the computation being isolated from the rest of the infrastructure or with another
set of available resources.

COMPSs Agents is a deployment approach especially designed to fit in this kind of environments. Each device is an
autonomous individual with processing capabilities hosting the execution of a COMPSs runtime as a background
service. Applications - running on that device or on another - can contact this service to request the execution of a
function in a serverless, stateless manner (resembling the Function-as-a-Service model). If the requested function

164 Chapter 5. Execution Environments

COMPSs Documentation, 2.9

follows the COMPSs programming model, the runtime will parallelise its execution as if it were the main function
of a regular COMPSs application.

Agents can associate with other agents by offering their embedded computing resources to execute functions to
achieve a greater purpose; in exchange, they receive a platform where they can offload their computation in the same
manner, and, thus, achieve lower response times. As opossed to the master-worker approach followed by the classic
COMPSs deployment, where a single node produces the all the workload, in COMPSs Agents deployments, any
of the nodes within the platform becomes a potential source of computation to distribute. Therefore, this master-
centric approach where workload producer to orchestrate holistically the execution is no longer valid. Besides,
concentrating all the knowledge of several applications and handling the changes of infrastructure represents an
important computational burden for the resource assuming the master role, especially if it is a resource-scarce
device like a mobile. For this two reasons, COMPSs agents proposes a hierachic approach to organize the nodes.
Each node will only be aware of some devices with which it has direct connection and only decides whether the
task runs on its embedded computing devices or if the responsability of executing the task is delegated onto one
of the other agents. In the latter case, the receiver node will face the same problem and decide whether it should
host the execution or forward it to a different node.

The following image illustrates an example of a COMPSs agents hierarchy that could be deployed in any kind of
facilities; for instance, a university campus. In this case, students only interact directly with their mobile phones
and laptops to run their applications; however, the computing workload produced by them is distributed across
the whole system. To do so, the mobile devices need to connect to one of the edge devices devices scattered across
the facilities acting as a Wi-Fi Hotspot (in the example, raspberry Pi) which runs a COMPSs agent. To submit
the operation execution to the platform, mobile devices can either contact a COMPSs agent running in the device
or the application can directly contact the remote agent running on the rPI. All rPi agents are connected to an
on-premise server within the campus that also runs a COMPSs Agent. Upon an operation request by a user device,
the rPi can host the computation on its own devices or forward the request to one of its neighbouring agents: the
on-premise server or another user’s device running a COMPSs agent. In the case that the rPi decides to move
up the request through the hierarchy, the on-premise server faces a similar problem: hosting the computation on
its local devices, delegating the execution onto one of the rPi — which in turn could forward the execution back
to another user’s device —, or submit the request to a cloud. Internally, the Cloud can also be organized with
COMPSs Agents hierarchy; thus, one of its nodes can act as the gateway to receive external requests and share
the workload across the whole system.

5.2. Agents Deployments 165

COMPSs Documentation, 2.9

5.2.1 Local

This section is intended to show how to execute COMPSs applications deploying the runtime as an agent in local
machines.

5.2.1.1 Deploying a COMPSs Agent

COMPSs Agents are deployed using the compss _agent start command:

compss@bsc:~$ compss_agent_start [OPTION]

There is one mandatory parameter --hostname that indicates the name that other agents and itself use to refer to
the agent. Bear in mind that agents are not able to dynamically modify its classpath; therefore, the --classpath
parameter becomes important to indicate the application available on the agent. Any public method available on
the classpath is an execution request candidate.

The following command raises an agent with name 192.168.1.100 and any of the public methods of the classes
encapsulated in the jarfile /app/path. jar can be executed.

compss@bsc:~$ compss_agent_start --hostname=192.168.1.100 --classpath=/app/path.jar

The compss_agent_start command allows users to set up the COMPSs runtime by specifying different options in
the same way as done for the runcompss command. To indicate the available resources, the device administrator
can use the --project and --resources option exactly in the same way as for the runcompss command. For
further details on how to dynamically modify the available resources, please, refer to section Modifying the available
TesSouTces.

Currently, COMPSs agents allow interaction through two interfaces: the Comm interface and the REST interface.
The Comm interface leverages on a propietary protocol to submit operations and request updates on the current
resource configuration of the agent. Although users and applications can use this interface, its design purpose
is to enable high-performance interactions among agents rather than supporting user interaction. The REST
interface takes the completely opposed approach; Users should interact with COMPSs agents through it rather
than submitting tasks with the Comm interface. The COMPSs agent allows to enact both interfaces at a time;
thus, users can manually submit operations using the REST interface, while other agents can use the Comm
interface. However, the device owner can decide at deploy time which of the interfaces will be available on the
agent and through which port the API will be exposed using the rest_port and comm_port options of the compss_-
agent_start command. Other agents can be configured to interact with the agent through any of the interfaces.
For further details on how to configure the interaction with another agent, please, refer to section Modifying the
available resources.

compss@bsc:~$ compss_agent_start -h
Usage: /opt/COMPSs/Runtime/scripts/user/compss_agent_start [OPTION]...

COMPSs options:

--appdir=<path> Path for the application class folder.
Default: /home/flordan/git/compss/framework/
—builders
--classpath=<path> Path for the application classes / modules
Default: Working Directory
--comm=<className> Class that implements the adaptor for

—communications with other nodes
Supported adaptors:
%77 es.bsc.compss.nio.master.NIOAdaptor
%77 es.bsc.compss.gat.master.GATAdaptor

(continues on next page)

166 Chapter 5. Execution Environments

COMPSs Documentation, 2.9

(continued from previous page)

t:: es.bsc.compss.agent.rest.Adaptor
es.bsc.compss.agent.comm.CommAgentAdaptor
Default: es.bsc.compss.agent.comm.CommAgentAdaptor

--comm_port=<int> Port on which the agent sets up a Comm interface.
—(<=0: Disabled)

-d, --debug Enable debug. (Default: disabled)

--hostname Name with which itself and other agents willy,
—identify the agent.

--jvm_opts="string" Extra options for the COMPSs Runtime JVM. Eachg
—option separed by "," and without blank spaces (Notice the quotes)
--library_path=<path> Non-standard directories to search for libraries

—(e.g. Java JVM library, Python library, C binding library)
Default: Working Directory

--log_dir=<path> Log directory. (Default: /tmp/)
--log_level=<level> Set the debug level: off | info | api | debug |,
—trace

Default: off

--master_port=<int> Port to run the COMPSs master communications.
(Only when es.bsc.compss.nio.master.NIOAdaptor isy
—used. The value is overriden by the comm_port value.)
Default: [43000,44000]

--pythonpath=<path> Additional folders or paths to add to the
—PYTHONPATH
Default: /home/flordan/git/compss/framework/
—builders
--python_interpreter=<string> Python interpreter to use (python/python2/
—python3) .

Default: python Version:

--python_propagate_virtual_environment=<true> Propagate the master virtual environment,
—to the workers (true/false).
Default: true

--python_mpi_worker=<false> Use MPI to run the python worker instead of,
omultiprocessing. (true/false).
Default: false

--python_memory_profile Generate a memory profile of the master.
Default: false
--python_worker_cache=<string> Python worker cache (true/size/false).

Only for NIO without mpi worker and python >= 3.8.
Default: false

--project=<path> Path of the project file
(Default: /opt/COMPSs/Runtime/configuration/xml/
—projects/examples/local/project.xml)

(continues on next page)

5.2. Agents Deployments 167

COMPSs Documentation, 2.9

(continued from previous page)

--resources=<path>
—resources/examples/local/resources.xml)

--rest_port=<int>
—(<=0: Disabled)

--reuse_resources_on_block=<boolean>
—~to a task when its execution stalls.

--scheduler=<className>

—FIFODataLocationScheduler
—FIFOScheduler
—FIFODataScheduler
—LIFOScheduler
—TaskScheduler
—LoadBalancingScheduler
—LoadBalancingScheduler
--scheduler_config_file=<path>

—configuration.

--input_profile=<path>
—application profile

--output_profile=<path>
—~at the end of the execution

--summary
—the application execution

Path of the resources file
(Default: /opt/COMPSs/Runtime/configuration/xml/

Port on which the agent sets up a REST interface.

Enables/Disables reusing the resources assigned,
(Default:true)
Class that implements the Scheduler for COMPSs
Supported schedulers:

F—— es.bsc.compss.scheduler.fifodatalocation.
es.bsc.compss.scheduler.fifonew.
es.bsc.compss.scheduler.fifodatanew.

es.bsc.compss.scheduler.lifonew.

es.bsc.compss.components.impl.

T T T T

es.bsc.compss.scheduler.loadbalancing.

Default: es.bsc.compss.scheduler.loadbalancing.

Path to the file which contains the scheduler,
Default: Empty

Path to the file which stores the input

Default: Empty

Path to the file to store the application profile
Default: Empty

Displays a task execution summary at the end of

Default: false

--tracing=<level>, --tracing, -t Set generation of traces and/or tracing level ([,
—true | basic] | advanced | scorep | arm-map | arm-ddt | false)
True and basic levels will produce the same|
—traces.

--trace_label=<string>
—used in the case of tracing is activated.

When no value is provided it is set to 1
Default: O

Add a label in the generated trace file. Onlyy

Default: None

(continues on next page)

168

Chapter 5. Execution Environments

COMPSs Documentation, 2.9

(continued from previous page)

Other options:
--help prints this message

5.2.1.2 Executing an operation

The compss _agent call operation commands interacts with the REST interface of the COMPSs agent to
submit an operation.

compss@bsc:~$ compss_agent_call_operation [options] application_name application_arguments

The command has two mandatory flags --master_node and --master_port to indicate the endpoint of the
COMPSs Agent. By default, the command submits an execution of the main method of the Java class with the
name passed in as the application_name and gathering all the application arguments in a single String[| instance.
To execute Python methods, the user can use the --1ang=PYTHON option and the Agent will execute the python
script with the name passed in as application_name. Operation invocations can be customized by using other
options of the command. The --method_name option allow to execute a specific method; in the case of specifying
a method, each of the parameters will be passed in as a different parameter to the function and it is necessary to
indicate the --array flag to encapsulate all the parameters as an array.

Additionally, the command offers two options to shutdown a whole agents deployment upon the operation com-
pletion. The flag --stop indicates that, at the end of the operation, the agent receiving the operation request will
stop. For shutting down the rest of the deployment, the command offers the option --forward_to to indicate a
list of IP:port pairs. Upon the completion of the operation, the agent receiving the request will forward the stop
command to all the nodes specified in such option.

compss@bsc.es:”$ compss_agent_call_operation -h
Usage: compss_agent_call_operation [options] application_name application_arguments

* Options:

General:

--help, -h Print this help message

--opts Show available options

--version, -v Print COMPSs version

--master_node=<string> Node where to run the COMPSs Master
Mandatory

--master_port=<string> Node where to run the COMPSs Master
Mandatory

--stop Stops the agent after the execution
of the task.

--forward_to=<list> Forwards the stop action to other
agents, the list shoud follow the
format:

<ipl>:<portl>;<ip2>:<port2>...
Launch configuration:
--cei=<string> Canonical name of the interface declaring the,
—methods
Default: No interface declared

--lang=<string> Language implementing the operation

(continues on next page)

5.2. Agents Deployments 169

COMPSs Documentation, 2.9

(continued from previous page)

Default: JAVA

--method_name=<string> Name of the method to invoke
Default: main and enables array parameter

--parameters_array, --array Parameters are encapsulated as an array
Default: disabled

For example, to submit the execution of the demoFunction method from the es.bsc.compss.tests.DemoClass
class passing in a single parameter with value 1 on the agent 127.0.0.1 with a REST interface listening on port
46101, the user should execute the following example command:

compss@bsc.es:™$ compss_agent_call_operation --master_node="127.0.0.1" --master_port="46101" -
—-method_name="demoFunction" es.bsc.compss.test.DemoClass 1

For the agent to detect inner tasks within the operation execution, the COMPSs Programming model requires an
interface selecting the methods to be replaced by asynchronous task creations. An invoker should use the --cei
option to specify the name of the interface selecting the tasks.

5.2.1.3 Modifying the available resources

Finally, the COMPSs framework offers tree commands to control dynamically the pool of resources available for the
runtime un one agent. These commands are compss_agent_add_resources, compss_agent_reduce_resources
and compss_agent_lost_resources.

The compss _agent add resources commands interacts with the REST interface of the COMPSs agent to
attach new resources to the Agent.

compss@bsc.es:™$ compss_agent_add_resources [options] resource_name [<adaptor_property_
—name=adaptor_property_value>]

By default, the command modifies the resource pool of the agent deployed on the node running the command
listenning on port 46101; however, this can be modified by using the options --agent_node and --agent_-
port to indicate the endpoint of the COMPSs Agent. The other options passed in to the command modify the
characteristics of the resources to attach; by default, it adds one single CPU core. However, it also allows to modify
the amount of GPU cores, FPGAs, memory type and size and OS details.

compss@bsc.es:”$ compss_agent_add_resources -h

Usage: compss_agent_add_resources [options] resource_name [<adaptor_property_name=adaptor_
—property_value>]

* Options:

General:

--help, -h Print this help message

--opts Show available options

--version, -v Print COMPSs version

--agent_node=<string> Name of the node where to add the resource
Default:

--agent_port=<string> Port of the node where to add the resource
Default:

Resource description:

(continues on next page)

170 Chapter 5. Execution Environments

COMPSs Documentation, 2.9

(continued from previous page)

--comm=<string> Canonical class name of the adaptor to interacty
—with the resource
Default: es.bsc.compss.agent.comm.CommAgentAdaptor

--cpu=<integer> Number of cpu cores available on the resource
Default: 1

--gpu=<integer> Number of gpus devices available on the resource
Default: O

--fpga=<integer> Number of fpga devices available on the resource
Default: O

--mem_type=<string> Type of memory used by the resource

Default: [unassigned]

--mem_size=<string> Size of the memory available on the resource
Default: -1
--os_type=<string> Type of operating system managing the resource

Default: [unassigned]

--os_distr=<string> Distribution of the operating system managing the,
—resource
Default: [unassigned]

--os_version=<string> Version of the operating system managing the(
—resource
Default: [unassigned]

If resource_name matches the name of the Agent, the capabilities of the device are increased according to the
description; otherwise, the runtime adds a remote worker to the resource pool with the specified characteristics.
Notice that, if there is another resource within the pool with the same name, the agent will increase the resources
of such node instead of adding it as a new one. The --comm option is used for selecting which adaptor is used for
interacting with the remote node; the default adaptor (CommAgent) interacts with the remote node through the
Comm interface of the COMPSs agent.

The following command adds a new Agent onto the pool of resources of the Agent deployed at IP 192.168.1.70
with a REST Interface on port 46101. The new agent, which has 4 CPU cores, is deployed on IP 192.168.1.72 and
has a Comm interface endpoint on port 46102.

compss@bsc.es:”™$ compss_agent_add_resources --agent_node=192.168.1.70 --agent_port=46101 --
—cpu=4 192.168.1.72 Port=46102

Conversely, the compss_agent_reduce_resources command allows to reduce the number of resources configured
in an agent. Executing the command causes the target agent to reduce the specified amount of resources from one
of its configured neighbors. At the moment of the reception of the resource removal request, the agent might be
actively using those remote resources by executing some tasks. If that is the case, the agent will register the resource
reduction request, stop submitting more workload to the corresponding node, and, when the idle resources of the
node match the request, the agent removes them from the pool. If upon the completion of the compss_agent_-
reduce_resources command no resources are associated to the reduced node, the node is completely removed
from the resource pool of the agent. The options and default values are the same than for the compss_agent_-
add_resources command. Notice that --comm option is not available because only one resource can be associated
to that name regardless the selected adaptor.

compss@bsc.es:”$ compss_agent_reduce_resources -h

(continues on next page)

5.2. Agents Deployments 171

COMPSs Documentation, 2.9

(continued from previous page)

Usage: compss_agent_reduce_resources
* Options:
General:

--help, -h

--opts

--version, -v

--agent_node=<string>

--agent_port=<string>

Resource description:

--cpu=<integer>

--gpu=<integer>

--fpga=<integer>

--mem_type=<string>

--mem_size=<string>

--os_type=<string>

--os_distr=<string>
—resource

--os_version=<string>
—resource

[options] resource_name

Print this help message
Show available options

Print COMPSs version

Name of the node where to add the resource

Default:

Port of the node where to add the resource

Default:

Number of cpu cores available on the resource

Default: 1

Number of gpus devices available on
Default: O

Number of fpga devices available on
Default: O

Type of memory used by the resource
Default: [unassigned]

Size of the memory available on the
Default: -1

the resource

the resource

resource

Type of operating system managing the resource

Default: [unassigned]

Distribution of the operating system managing the

Default: [unassigned]

Version of the operating system managing they

Default: [unassigned]

Finally, the last command to control the pool of resources configured, compss_agent_lost_resources, immedi-
ately removes from an agent’s pool all the resources corresponding to the remote node associated to that name.

compss@bsc.es:~$ compss_agent_lost_resources [options] resource_name

In this case, the only available options are those used for identifying the endpoint of the agent:--agent_node and
--agent_port. As with the previous commands, by default, the request is submitted to the agent deployed on the
IP address 127.0.0.1 and listenning on port 46101.

172

Chapter 5. Execution Environments

COMPSs Documentation, 2.9

5.2.2 Supercomputers

Similar to Section Supercomputers for Master-Worker deployments, this section is intended to walk you through
the COMPSs usage with agents in Supercomputers. All the configuration and commands to install COMPSs on
the Supercomputer, load the environment and submitting a job remain exactly the same as described in Sections
Supercomputers.

The only difference to submit jobs with regards the COMPSs Master-Worker approach is to enact the agents option
of the enqueue compss command. When this option is enabled, the whole COMPSs deployment changes and,
instead of deploying the COMPSs master in one node and workers in the remaining ones, it deploys an agent
in each node provided by the queue system. When all the agents have been deployed, COMPSs’ internal scripts
handling the job execution will submit the operation using the REST API of the one of the agent. Although
COMPSs agents allow any method of the application to be the starting point of the execution, to mantain the
similarities between the scripts when deploying COMPSs following the Master-Worker or the Agents approaches,
the execution will start with the main method of the class/module passed in as a parameter to the script.

The main advantage of using the Agents approach in Supercomputers is the ability to define different topologies.
For that purpose, the --agents option of the enqueue compss script allows to choose two different options
--agents=plain and --agents=tree.

The Plain topology configures the deployment resembling the Master-worker approach. One of the agents is
selected as the master an has all the other agents as workers where to offload tasks; the agents acting as workers
also host a COMPSs runtime and, therefore, they can detect nested tasks on the tasks offloaded onto them.
However, nested tasks will always be executed on the worker agent detecting them.

The Tree topology is the default topology when using agent deployments on Supercomputers. These option tries
to create a three-layer topology that aims to exploit data locality and reduce the workload of the scheduling
problem. Such topology consists in deploying an agent on each node managing only the resources available within
the node. Then, the script groups all the nodes by rack and selects a representative node for each group that will
orchestrate all the resources within it and offload tasks onto the other agents. Finally, the script picks one of these
representative agents as the main agent of the hierarchy; this main agent is configured to be able to offload tasks
onto the representative agents for all other racks; it will be onto this node that the script will call the main method
of the execution. The following image depicts an example of such topology on Marenostrum.

~

O Mode 1 O Mode 1
—O Node2 rack02 40 Node 2 rack4s
—O MNode 3 —O Node 3

() Node 72 40 Node 72

To ensure that no resources are wasted waiting from the execution end until the wall clock limit, the enqueue -
compss script submits the invocation enabling the --stop and --forward options to stop all the deployed agents
for the execution.

5.2. Agents Deployments 173

COMPSs Documentation, 2.9

5.3 Schedulers

This section provides detailed information about all the schedulers that are implemented in COMPSs and can be
used for the executions of the applications. Depending on the scheduler selected for your executions the tasks will
be scheduled in a way or another and this will result in different execution times depending on the scheduler used.

Table 16: Schedulers

Scheduler Class name Type| Description Recom-
name mendations
LoadBalanc- es.bsc.compss.scheduler.loadbalafdadyl SaiBatimesingathedolation and then
ingScheduler (FIFO) task generation
(default)
FIFODatalLo- | es.bsc.compss.scheduler.fifodataldtediyn IibEacaloetdonbghmdidaries then | SCS when
cationSched- data location and then the (FIFO) task | using local
uler generation disk
FIFOSched- es.bsc.compss.scheduler.fifonew| REQiychdatitzies the (FIFO) generation order
uler of the tasks
FIFO- es.bsc.compss.scheduler.fifodatanieaHIFPidatsizek ethtledependencies and then | SCS when
DataScheduler the (FIFO) task generation using
shared
disk
LIFOSched- es.bsc.compss.scheduler.lifonew| [RE@Scidatézies the (LIFO) generation order
uler of the tasks
MOScheduler es.bsc.compss.scheduler.multiolyjéutliive| Schedules all tasks based on a multiob-
(Experimen- graph| jective function (time, energy and cost
tal) estimation)

174 Chapter 5. Execution Environments

Chapter 6

Tracing

COMPSs is instrumented with EXTRAE, which enables to produce PARAVER traces for performance profiling.
This section is intended to walk you through the tracing of your COMPSs applications in order to analyse the
performance with great detail.

6.1 COMPSs applications tracing

COMPSs Runtime has a built-in instrumentation system to generate post-execution tracefiles of the applications’
execution. The tracefiles contain different events representing the COMPSs master state, the tasks’ execution
state, and the data transfers (transfers’ information is only available when using NIO adaptor), and are useful for
both visual and numerical performance analysis and diagnosis. The instrumentation process essentially intercepts
and logs different events, so it adds overhead to the execution time of the application.

The tracing system uses Extrae! to generate tracefiles of the execution that, in turn, can be visualized with
Paraver?. Both tools are developed and maintained by the Performance Tools team of the BSC and are available
on its web page http://www.bsc.es/computer-sciences/performance-tools.

For each worker node and the master, Extrae keeps track of the events in an intermediate format file (with .mpit
extension). At the end of the execution, all intermediate files are gathered and merged with Extrae’s mpi2prv
command in order to create the final tracefile, a Paraver format file (.prv). See the Visualization Section for further
information about the Paraver tool.

When instrumentation is activated, Extrae outputs several messages corresponding to the tracing initialization,
intermediate files’ creation, and the merging process.

At present time, COMPSs tracing features two execution modes:

Basic Aimed at COMPSs applications developers
Advanced For COMPSs developers and users with access to its source code or custom installations

Next sections describe the information provided by each mode and how to use them.

1 For more information: https://www.bsc.es/computer-sciences,/extrae
2 For more information: https://www.bsc.es/computer-sciences/performance-tools/paraver

175

http://www.bsc.es/computer-sciences/performance-tools
https://www.bsc.es/computer-sciences/extrae
https://www.bsc.es/computer-sciences/performance-tools/paraver

COMPSs Documentation, 2.9

6.1.1 Basic Mode

This mode is aimed at COMPSs’ apps users and developers. It instruments computing threads and some man-
agement resources providing information about tasks’ executions, data transfers, and hardware counters if PAPI
is available (see PAPI: Hardware Counters for more info).

6.1.1.1 Basic Mode Usage

In order to activate basic tracing one needs to provide one of the following arguments to the execution command:

o -t

e —-tracing

e —-tracing=basic

e —-tracing=true
Example:

$ runcompss --tracing application_name application_args

When tracing is activated, Extrae generates additional output to help the user ensure that instrumentation is
turned on and working without issues. On basic mode this is the output users should see when tracing is working
correctly:

$ runcompss --tracing kmeans.py -n 102400000 -f 8 -d 3 -c 8 -i 10

[INFO] Inferred PYTHON language

[INFO] Using default location for project file: /opt/COMPSs//Runtime/configuration/xml/
—projects/default_project.xml

[INFO] Using default location for resources file: /opt/COMPSs//Runtime/configuration/xml/
—resources/default_resources.xml

[INFO] Using default execution type: compss

Welcome to Extrae 3.8.3

Extrae: Parsing the configuration file (/opt/COMPSs//Runtime/configuration/xml/tracing/extrae_
—basic.xml) begins

Extrae: Warning! <trace> tag has no <home> property defined.

Extrae: Generating intermediate files for Paraver traces.

PAPI Error: Error finding event OFFCORE_RESPONSE_O:SNP_FWD, it is used in derived event PAPI_
—CA_ITV.

Extrae: PAPI domain set to ALL for HWC set 1

Extrae: HWC set 1 contains following counters < PAPI_TOT_INS (0x80000032) PAPI_TOT_CYC,

- (0x8000003b) PAPI_L1_DCM (0x80000000) PAPI_L2_DCM (0x80000002) PAPI_L3_TCM (0x80000008),
—PAPI_BR_INS (0x80000037) PAPI_BR_MSP (0x8000002e) RESOURCE_STALLS (0x4000002f) > - nevery
—changes

Extrae: Tracing buffer can hold 100000 events

Extrae: Circular buffer disabled.

Extrae: Warning! <input-output> tag will be ignored. This library does not support,
—instrumenting I/0 calls.

Extrae: Dynamic memory instrumentation is disabled.

Extrae: Basic I/0 memory instrumentation is disabled.

Extrae: System calls instrumentation is disabled.

Extrae: Parsing the configuration file (/opt/COMPSs//Runtime/configuration/xml/tracing/extrae_
—basic.xml) has ended

Extrae: Intermediate traces will be stored in /home/user/temp/documentation

Extrae: Tracing mode is set to: Detail.

(continues on next page)

176 Chapter 6. Tracing

COMPSs Documentation, 2.9

(continued from previous page)

Extrae: Error! Hardware counter PAPI_BR_INS (0x80000037) cannot be added in set 1 (task 0,
—thread 0)

Extrae: Error! Hardware counter PAPI_BR_MSP (0x8000002e) cannot be added in set 1 (task O,
—thread 0)

Extrae: Error! Hardware counter RESOURCE_STALLS (0x4000002f) cannot be added in set 1 (task O,
< thread 0)

Extrae: Successfully initiated with 1 tasks and 1 threads

PAPI Error: Error finding event OFFCORE_RESPONSE_O:SNP_FWD, it is used in derived event PAPI_
—CA_TITV.

Extrae: Error! Hardware counter PAPI_BR_INS (0x80000037) cannot be added in set 1 (task 0,
—thread 0)

Extrae: Error! Hardware counter PAPI_BR_MSP (0x8000002e) cannot be added in set 1 (task O,
—thread 0)

Extrae: Error! Hardware counter RESOURCE_STALLS (0x4000002f) cannot be added in set 1 (task O,
< thread 0)

pyextrae: Loading tracing library 'libseqtrace.so'

WARNING: COMPSs Properties file is null. Setting default values

Loading LoggerManager

[(419) API] - Starting COMPSs Runtime v2.9.rc2107 (build 20210720-1547.
—r81bdafc6f06a7680a344ae434a467473echbaf27e)

Generation/Load done

Starting kmeans

Doing iteration #1/10

Doing iteration #2/10

Doing iteration #3/10

Doing iteration #4/10

Doing iteration #5/10

Doing iteration #6/10

Doing iteration #7/10

Doing iteration #8/10

Doing iteration #9/10

Doing iteration #10/10

Ending kmeans

Initialization time: 55.369870
Kmeans time: 117.859757
Total time: 173.229627

CENTRES:

[[0.69757475 0.74511351 0.48157611]
[0.54683653 0.20274669 0.2117475]
[0.24194863 0.74448094 0.75633981]
[0.21854362 0.67072938 0.23273541]
[0.77272546 0.68522249 0.16245965]
[0.22683962 0.23359743 0.67203863]
[0.75351606 0.73746265 0.83339847]
[0.75838884 0.23805883 0.71538748]1]

Extrae: Intermediate raw trace file created : /home/user/temp/documentation/set-0/TRACE@linux-
—2e63.0000027029000000000002 .mpit
Extrae: Intermediate raw trace file created : /home/user/temp/documentation/set-0/TRACEQ@linux-
—2e63.0000027029000000000001 .mpit

(continues on next page)

6.1. COMPSs applications tracing 177

COMPSs Documentation, 2.9

(continued from previous page)

Extrae: Intermediate raw trace file created : /home/user/temp/documentation/set-0/TRACEQ@linux-
—2e63.0000027029000000000000 .mpit
Extrae: Intermediate raw sym file created : /home/user/temp/documentation/set-0/TRACE@linux-
—2e63.0000027029000000000000. sym
Extrae: Deallocating memory.
Extrae: Application has ended. Tracing has been terminated.
merger: Output trace format is: Paraver
merger: Extrae 3.8.3
mpi2prv: Assigned nodes < linux-2e63 >
mpi2prv: Assigned size per processor < 1 Mbytes >
mpi2prv: File set-0/TRACE@linux-2e63.0000027148000001000000.mpit is object 1.2.1 on node
—linux-2e63 assigned to processor 0O
mpi2prv: File set-0/TRACE@linux-2e63.0000027148000001000001.mpit is object 1.2.2 on nodey
—linux-2e63 assigned to processor 0O
mpi2prv: File set-0/TRACE@linux-2e63.0000027148000001000002.mpit is object 1.2.3 on nodey
—linux-2e63 assigned to processor 0
mpi2prv: File set-0/TRACE@linux-2e63.0000027148000001000003.mpit is object 1.2.4 on nodey
—linux-2e63 assigned to processor 0O
mpi2prv: File set-0/TRACE@linux-2e63.0000027148000001000004 .mpit is object 1.2.5 on nodey
—linux-2e63 assigned to processor 0O
mpi2prv: File set-0/TRACE@linux-2e63.0000027148000001000005.mpit is object 1.2.6 on node
—linux-2e63 assigned to processor 0O
mpi2prv: File set-0/TRACE@linux-2e63.0000027148000001000006.mpit is object 1.2.7 on node
—linux-2e63 assigned to processor 0O
mpi2prv: File set-0/TRACE@linux-2e63.0000027029000000000000.mpit is object 1.1.1 on nodey
—linux-2e63 assigned to processor 0
mpi2prv: File set-0/TRACE@linux-2e63.0000027029000000000001.mpit is object 1.1.2 on node
—linux-2e63 assigned to processor 0O
mpi2prv: File set-0/TRACE@linux-2e63.0000027029000000000002.mpit is object 1.1.3 on nodey,
—linux-2e63 assigned to processor 0O
mpi2prv: A total of 8 symbols were imported from TRACE.sym file
mpi2prv: O function symbols imported
mpi2prv: 8 HWC counter descriptions imported
mpi2prv: Checking for target directory existence... exists, ok!
mpi2prv: Selected output trace format is Paraver
mpi2prv: Stored trace format is Paraver
mpi2prv: Searching synchronization points... done
mpi2prv: Time Synchronization disabled.
mpi2prv: Circular buffer enabled at tracing time? NO
mpi2prv: Parsing intermediate files
mpi2prv: Progress 1 of 2 ... 5% 10% 15% 20% 25}, 30% 35% 407% 45% 50% 55}, 60% 65% 70% 75% 80% 85
<% 907% 95% done
mpi2prv: Processor O succeeded to translate its assigned files
mpi2prv: Elapsed time translating files: O hours O minutes O seconds
mpi2prv: Elapsed time sorting addresses: O hours O minutes O seconds
mpi2prv: Generating tracefile (intermediate buffers of 671078 events)
This process can take a while. Please, be patient.
mpi2prv: Progress 2 of 2 ... 5% 10% 15% 20% 25}, 307 35 40% 45% 50% 55% 60% 65% 70% 75% 80% 85
—% 90% 957 done
mpi2prv: Elapsed time merge step: O hours O minutes O seconds
mpi2prv: Resulting tracefile occupies 664068 bytes
mpi2prv: Removing temporal files... mpi2prv: Warning! Clock accuracy seems to be iny
—microseconds instead of nanoseconds.
done
mpi2prv: Elapsed time removing temporal files: O hours O minutes O seconds
mpi2prv: Congratulations! ./trace/kmeans.py_compss.prv has been generated.

(continues on next page)

178 Chapter 6. Tracing

COMPSs Documentation, 2.9

(continued from previous page)

[(189793) API] - Execution Finished

The output contains diverse information about the tracing, for example, Extrae version used (VERSION will be
replaced by the actual number during executions), the XML configuration file used (/opt/COMPSs/Runtime/
configuration/xml/tracing/extrae_basic.xml — if using python, the extrae_python_worker.xml located in
the same folder will be used in the workers), the amount of threads instrumented (objects through 1.1.1 to 1.2.7),
available hardware counters (PAPI_TOT_INS (0x80000032) ... PAPI_L3_TCM (0x80000008)) or the name of the
generated tracefile (./trace/ kmeans.py_compss.prv). When using NIO communications adaptor with debug
activated, the log of each worker also contains the Extrae initialization information.

Tip: The extrae configuration files used in basic mode are:

o $COMPSS_HOME/Runtime/configuration/xml/tracing/extrae_basic.xml
e $COMPSS_HOME/Runtime/configuration/xml/tracing/extrae_python_worker.xml (when using Python)

Tip: Figure 22 was generated with this execution.

Important: COMPSs needs to perform an extra merging step when using Python in order to add the Python-
produced events to the main tracefile. If Python events are not shown, check runtime.log file and search for the
following expected output of this merging process to find possible errors:

[(189467) (2021-07-21 08:09:33,292) Tracing] @teMasterPackage - Tracing:,
—generating master package: package

[(189468) (2021-07-21 08:09:33,293) Tracing] Qrun - Starting,
—stream goobler

[(189469) (2021-07-21 08:09:33,294) Tracing] @run - Starting,
—stream goobler

[(189501) (2021-07-21 08:09:33,326) Tracing] @erMasterPackage - Tracing:
—Transferring master package

[(189503) (2021-07-21 08:09:33,328) Tracing] QgenerateTrace - Tracing:,
—Generating trace with mode gentrace

[(189503) (2021-07-21 08:09:33,328) Tracing] @run - Starting,
—stream goobler

[(189504) (2021-07-21 08:09:33,329) Tracing] @run - Startingy,
—stream goobler

[(189589) (2021-07-21 08:09:33,414) Tracing] @<init> - Trace's,
—merger initialization successful

[(189589) (2021-07-21 08:09:33,414) Tracing] @umAndSyncEvents - Parsing,
—master sync events

[(189589) (2021-07-21 08:09:33,414) Tracing] Q@getSyncEvents - Getting syncy
—events from: /home/user/.COMPSs/kmeans.py_01/trace/kmeans.py_compss.prv for worker -1
[(189745) (2021-07-21 08:09:33,570) Tracing] QumAndSyncEvents - Merging task
—traces into master which contains 1 lines.

[(189745) (2021-07-21 08:09:33,570) Tracing] QumAndSyncEvents - Merging,
—worker /home/user/.COMPSs/kmeans.py_01/trace/python/1_python_trace.prv

[(189745) (2021-07-21 08:09:33,570) Tracing] QgetWorkerEvents - Getting,
—worker events from: /home/user/.COMPSs/kmeans.py_01/trace/python/1_python_trace.prv
[(189751) (2021-07-21 08:09:33,576) Tracing] @getSyncEvents - Getting syncy
—events from: /home/user/.COMPSs/kmeans.py_01/trace/python/1_python_trace.prv for worker 2
[(189852) (2021-07-21 08:09:33,677) Tracing] Q@iteWorkerEvents - Writing 4089,

—lines from worker 2 with 4 threads

(continues on next page)

6.1. COMPSs applications tracing 179

COMPSs Documentation, 2.9

(continued from previous page)

[(189872) (2021-07-21 08:09:33,697) Tracing] @ardwareCounters - Merging PCF
—Hardware Counters into master

[(189872) (2021-07-21 08:09:33,697) Tracing] QgetHWCounters - Getting pcfy
—hw counters from: /home/user/.COMPSs/kmeans.py_O1/trace/kmeans.py_compss.pcf

[(189872) (2021-07-21 08:09:33,697) Tracing] Q@getHWCounters - Getting pcfy
—hw counters from: /home/user/.COMPSs/kmeans.py_01/trace/python/1_python_trace.pcf
[(189873) (2021-07-21 08:09:33,698) Tracing] @ardwareCounters - Analised
—worker had O lines to be included

[(189873) (2021-07-21 08:09:33,698) Tracing] @ardwareCounters - No hardware
—counters to include in PCF.

[(189873) (2021-07-21 08:09:33,698) Tracing] @merge - Merging,
—finished.

[(189873) (2021-07-21 08:09:33,698) Tracing] QupdateThreads - Tracing:
—Updating thread labels

[(189914) (2021-07-21 08:09:33,739) Tracing] @latedPrvThreads - Tracing:
—Updating thread identifiers in .prv file

[(189959) (2021-07-21 08:09:33,784) Tracing] @anMasterPackage - Tracing:
—Removing tracing master package: /home/user/documentation/master_compss_trace.tar.gz
[(189959) (2021-07-21 08:09:33,784) Tracing] @anMasterPackage - Deleted,

—master tracing package.

6.1.1.2 Instrumented Threads in Basic Mode

Basic traces instrument the following threads:

e Master node (3 threads)
— COMPSs runtime (main application thread)
— Access Processor thread
— Task Dispatcher thread
e Worker node (3 + Computing Units)
— Worker main thread
— Worker File system thread
— Worker timer thread
— Number of threads available for computing

6.1.1.3 Information Available in Basic Traces

The basic mode tracefiles contain three kinds of information:

Events Marking diverse situations such as the runtime start, tasks’ execution or synchronization points.
Communications Showing the transfers and requests of the parameters needed by COMPSs tasks.
Hardware counters Of the execution obtained with Performance API (see PAPI: Hardware Counters)

6.1.1.4 Basic Trace Example

Figure 22 is a tracefile generated by the execution of a k-means clustering algorithm. Each timeline contains
information of a different resource, and each event’s name is on the legend. Depending on the number of computing
threads specified for each worker, the number of timelines varies. However the following threads are always shown:

Master - Thread 1.1.1 This timeline shows the actions performed by the main thread of the COMPSs applica-
tion

Access Processor - Thread 1.1.2 All the events related to the tasks’ parameters management, such as depen-
dencies or transfers are shown in this thread.

Task Dispatcher - Thread 1.1.3 Shows information about the state and scheduling of the tasks to be executed.

180 Chapter 6. Tracing

COMPSs Documentation, 2.9

Worker X Master - Thread X.1.1 This thread is the master of each worker and handles the computing re-
sources and transfers. It is repeated for each available resource. All data events of the worker, such as
requests, transfers and receives are marked on this timeline (when using the appropriate configurations).

Worker X File system - Thread X.1.2 This thread manages the synchronous file system operations (e.g. copy
file) performed by the worker.

Worker X Timer - Thread X.1.3 This thread manages the cancellation of the tasks when the wall-clock limit
is reached.

Worker X Executor Y - Thread X.2.Y Shows the actual tasks execution information and is repeated as many
times as computing threads has the worker X

CCOMPSs Runtim 1eans. py_compss.prv

What/Where Timing Colors
Custom palette
Start

M stor
Barrier
Waiting for open file

M 7ask Running
Delete File
Access Processor: Analyse task

[l Access Processor: Update graph

[l Access Processor: Register data access
Access Processor: Finish access to file
Task Dispatcher: Action update

[l vask Dispatcher: Execute tasks

[l Task Dispatcher: Shutdown
Worker: Creating task sandbox
Remove Obsoletes

[l &ind original File names To Renames.
Check OUT parameters.

[l it Thread for synch file system operations

Figure 22: Basic mode tracefile for a k-means algorithm visualized with compss_runtime.cfg

6.1.2 Advanced Mode

This mode is for more advanced COMPSs’ users and developers who want to customize further the information
provided by the tracing or need rawer information like pthreads calls or Java garbage collection. With it, every
single thread created during the execution is traced.

Important: The extra information provided by the advanced mode is only available on the workers when using
NIO adaptor.

6.1. COMPSs applications tracing 181

COMPSs Documentation, 2.9

6.1.2.1 Advanced Mode Usage

In order to activate the advanced tracing add the following option to the execution:
e -—-tracing=advanced

Example:

$ runcompss --tracing=advanced application_name application_args

When advanced tracing is activated, the configuration file reported on the output is $COMPSS_HOME/Runtime/
configuration/xml/tracing/extrae_advanced.xml.

$ runcompss --tracing=advanced kmeans.py -n 102400000 -f 8 -d 3 -c 8 -i 10

[INFO] Inferred PYTHON language

[INFO] Using default location for project file: /opt/COMPSs//Runtime/configuration/xml/
wprojects/default_project.xml

[INFO] Using default location for resources file: /opt/COMPSs//Runtime/configuration/xml/
—resources/default_resources.xml

[INFO] Using default execution type: compss

Welcome to Extrae 3.8.3
Extrae: Parsing the configuration file (/opt/COMPSs//Runtime/configuration/xml/tracing/extrae_
—advanced.xml) begins

This is the default file used for advanced tracing as well as extrae_python_worker.xml if using Python. However,
advanced users can modify it in order to customize the information provided by Extrae. The configuration file is
read first by the master on the runcompss script. When using NIO adaptor for communication, the configuration
file is also read when each worker is started (on persistent worker.sh or persistent _worker _starter.sh depending
on the execution environment).

Tip: The extrae configuration files used in advanced mode are:

e $COMPSS_HOME/Runtime/configuration/xml/tracing/extrae_advanced.xml
e $COMPSS_HOME/Runtime/configuration/xml/tracing/extrae_python_worker.xml (when using Python)

Tip: Figure 23 was generated with this execution.

If the extrae_advanced.xml file is modified, the changes always affect the master, and also the workers when
using NIO. Modifying the scripts which turn on the master and the workers is possible to achieve different in-
strumentations for master/workers. However, not all Extrae available XML configurations work with COMPSs,
some of them can make the runtime or workers crash so modify them at your discretion and risk. More informa-
tion about instrumentation XML configurations on Extrae User Guide at: https://www.bsc.es/computer-sciences/
performance-tools/trace-generation /extrae/extrae-user-guide.

182 Chapter 6. Tracing

https://www.bsc.es/computer-sciences/performance-tools/trace-generation/extrae/extrae-user-guide
https://www.bsc.es/computer-sciences/performance-tools/trace-generation/extrae/extrae-user-guide

COMPSs Documentation, 2.9

6.1.2.2 Instrumented Threads in Advanced Mode

Advanced mode instruments all the pthreads created during the application execution. It contains all the threads
shown on basic traces plus extra ones used to call command-line commands, I/O streams managers and all actions
which create a new process. Due to the temporal nature of many of this threads, they may contain little information
or appear just at specific parts of the execution pipeline.

6.1.2.3 Information Available in Advanced Traces

The advanced mode tracefiles contain the same information as the basic ones:

Events Marking diverse situations such as the runtime start, tasks’ execution or synchronization points.
Communications Showing the transfers and requests of the parameters needed by COMPSs tasks.
Hardware counters Of the execution obtained with Performance API (see PAPI: Hardware Counters)

6.1.2.4 Advanced Trace Example

Figure 23 shows the total completed instructions for a sample program executed with the advanced tracing mode.
Note that the thread - resource correspondence described on the basic trace example is no longer static and thus
cannot be inferred. Nonetheless, they can be found thanks to the named events shown in other configurations such
as compss_ runtime.cfq.

Completed Instructions @ increment.Increment compss trace 1460630596.prv

2 R R0 01 AR O A1

WO RN
AL AW

[PAPL_TOT_DS [Instr completed] value 8

Figure 23: Advanced mode tracefile for a testing program showing the total completed instructions

For further information about Extrae, please visit the following site:

http://www.bsc.es/computer-science/extrae

6.1. COMPSs applications tracing 183

http://www.bsc.es/computer-science/extrae

COMPSs Documentation, 2.9

6.1.3 Trace for Agents

Applications deployed as COMPSs Agents can also be traced. Unlike master-worker COMPSs applications, where
the trace contains the events for all the nodes within the infrastructure, with the Agents approach, each Agent
generates its own trace.

To activate the tracing — either basic or advanced mode —, the compss_agent_start command allows the -t,
--tracing and --tracing=<level> options with the same meaning as with the master-worker approach. For
example:

$ compss_agent_start \
--hostname="COMPSsWorker01" \
--pythonpath=""/python/path" \
--log_dir=""/agent1/log" \
--rest_port="46101" \
--comm_port="46102" \
-d -t \
--project=""/project.xml" \
--resources=""/resources.xml"&

Upon the completion of an operation submitted with the --stop flag, the agent stops and generates a trace folder
within his log folder, containing the prv, pcf and row files.

$ compss_agent_call_operation" \
--lang="PYTHON" \
--master_node="127.0.0.1" \
--master_port="46101" \
--method_name="kmeans" \
--stop \
"kmeans"

When multiple agents are involved in an application’s execution, the stop command must be forwarded to all the
other agents with the --forward parameter.

$ compss_agent_call_operation" \
--lang="PYTHON" \
--master_node="127.0.0.1" \
--master_port="46101" \
--method_name="kmeans" \
--stop \
--forward_to="COMPSsWorker02:46201 ; COMPSsWorker03:46301" \
"kmeans"

Upon the completion of the last operation submitted and the shutdown of all involved agents, all agent will have
generated their own individual trace.

184 Chapter 6. Tracing

COMPSs Documentation, 2.9

In order to merge this traces the script compss_agent_merge_traces can be used. The script takes as parameters
the folders of the log dirs of the agents with the traces to merge.

$ compss_agent_merge_traces -h

Usage example:

$ compss_agent_merge_traces \
--result_trace_name=merged_kmeans \
~/.COMPSs/lagent_python3_01/agentl \
~/.COMPSs/lagent_python3_01/agent2 \
~/.COMPSs/lagent_python3_01/agent3

The script will put the merged trace in the specified output_dir or in the current directory inside a folder named
compss_agent_merge_traces by default

6.1. COMPSs applications tracing 185

COMPSs Documentation, 2.9

6.1.4 Custom Installation and Configuration
6.1.4.1 Custom Extrae

COMPSs uses the environment variable EXTRAE_HOME to get the reference to its installation directory (by default:
/opt/COMPSs/Dependencies/extrae). However, if the variable is already defined once the runtime is started,
COMPSs will not override it. User can take advantage of this fact in order to use custom extrae installations. Just
set the EXTRAE_HOME environment variable to the directory where your custom package is, and make sure that it
is also set for the worker’s environment. Be aware that using different Extrae packages can break the runtime and
executions so you may change it at your own risk.

6.1.4.2 Custom Configuration file

COMPSs offers the possibility to specify an extrae custom configuration file in order to harness all the tracing
capabilities further tailoring which information about the execution is displayed (except for Python workers). To
do so just indicate the file as an execution parameter as follows:

--extrae_config_file=/path/to/config/file.xml

In addition, there is also the possibility to specify an extrae custom configuration file for the Python workers as
follows:

--extrae_config_file_python=/path/to/config/file_python.xml

The configuration files must be in a shared disk between all COMPSs workers because a file’s copy is not distributed
among them, just the path to that file.

Tip: The default configuration files are in:

e $COMPSS_HOME/Runtime/configuration/xml/tracing/extrae_advanced.xml
e $COMPSS_HOME/Runtime/configuration/xml/tracing/extrae_python_worker.xml (when using Python)

The can be taken as base for customization.

6.2 Visualization

Paraver is the BSC tool for trace visualization. Trace events are encoded in Paraver format (.prv) by the Extrae
tool. Paraver is a powerful tool and allows users to show many views of the trace data using different configuration
files. Users can manually load, edit or create configuration files to obtain different tracing views.

The following subsections explain how to load a trace file into Paraver, open the task events view using an already
predefined configuration file, and how to adjust the view to display the data properly.

For further information about Paraver, please visit the following site:

http://www.bsc.es/computer-sciences/performance-tools/paraver

6.2.1 Trace Loading

The final trace file in Paraver format (.prv) is at the base log folder of the application execution inside the trace
folder. The fastest way to open it is calling the Paraver binary directly using the tracefile name as the argument.

$ wxparaver /path/to/trace/trace.prv

Tip: The path where the traces are usually located is ${HOME}/.COMPSs/<APPLICATION_NAME_INFO>/trace/.

186 Chapter 6. Tracing

http://www.bsc.es/computer-sciences/performance-tools/paraver

COMPSs Documentation, 2.9

Where <APPLICATION NAME INFO> represents the executed application name and some information, such
as the execution number or deployment information (e.g. number of nodes) and the generation time.

6.2.2 Configurations

To see the different events, counters and communications that the runtime generates, diverse configurations are
available with the COMPSs installation. To open one of them, go to the “Load Configuration” option in the
main window and select “File”. The configuration files are under the following path for the default installation
/opt/COMPSs/Dependencies/paraver/cfgs/. A detailed list of all the available configurations can be found in
Paraver: configurations.

The following guide uses a kmeans trace (result from executing the Kmeans sample code with the --tracing flag.)
with the compss_ tasks.cfg configuration file as an example to illustrate the basic usage of Paraver. After accepting
the load of the configuration file, another window appears showing the view. Figure 24 and Figure 25 show an
example of this process.

£ Paraver R -]

File Hints Help

O EE X o« @
Workspaces

Useful+PAPI counters+Resources+Fush
Window browser

kmeans.py_compss prv v

Files & Window Properties
57|
o
~ P opt
~ B compss
> B Bindings
~ [Dependencies
> B extrae
> B java_GaT
~ B paraver
v B
> B comm
> B python
= 2dp_runtime_state cfg

= 2dp_tasks.cfg

Paraver files hd

Autormatic Redraw Force Redraw

Figure 24: Paraver menu

COMPSs Tasks @ kmeans.py_compss.prv

TIME TIMER

Figure 25: Kmeans Trace file

6.2. Visualization 187

COMPSs Documentation, 2.9

Caution: In a Paraver view, a red exclamation sign may appear in the bottom-left corner. This means that
some event values are not being shown (because they are out of the current view scope), so little adjustments
must be made to view the trace correctly:

e Fit window: modifies the view scope to fit and display all the events in the current window.
— Right click on the trace window
— Choose the option Fit Semantic Scale / Fit Both

6.2.3 View Adjustment

e View Event Flags: marks with a green flag all the emitted events.
— Right click on the trace window
— Chose the option View / Event Flags

COMPSs Tasks @ kmeans.py_comp:
ror

Ipart'\‘al’sm —
Copy Ctrl+C

Clone

Rename F2

O Fit Time Scale

Fit Semantic Scale >

Fit Objects
Select Objects...
Communication Lines

Paint As >

=) N
Drawmode >
Pixel Size >
Object Labels >
Object Axis >
Run >
Synchronize >
Save >
Timing Ctrl+T

Info Panel

Figure 26: Paraver view adjustment: View Event Flags

e Show Info Panel: display the information panel. In the tab “Colors” we can see the legend of the colors shown
in the view.
— Right click on the trace window
— Check the Info Panel option
— Select the Colors tab in the panel

e Zoom: explore the tracefile more in-depth by zooming into the most relevant sections.
— Select a region in the trace window to see that region in detail
— Repeat the previous step as many times as needed
— The undo-zoom option is in the right click panel

188 Chapter 6. Tracing

COMPSs Documentation, 2.9

Copy Ctri+C

What/Where Timing Colors

Custom palette Clone
B generate_fragment Rename F2
partial_sum
M merge (;
O Fit Time Scale
Fit Semantic Scale >
Fit Objects

Select Objects...

View >
Paint As >
Drawmode >
Pixel Size >
Object Labels >
Object Axis >
Run >
Synchronize >
Save >
Timing Ctrl+T

O [N

Figure 27: Paraver view adjustment: Show info panel

COMPSs Tasks

169,285,160 us - 114,802,565 us

Figure 28: Paraver view adjustment: Zoom configuration

COMPSs Tasks

NTIME / €
IME TD
AL

Figure 29: Paraver view adjustment: Zoom result

6.2. Visualization 189

COMPSs Documentation, 2.9

6.3 Interpretation

This section explains how to interpret a trace view once it has been adjusted as described in the previous section.

The trace view has on its horizontal axis the execution time and on the vertical axis one line for the master
at the top, and below it, one line for each of the workers.

In a line, the black color is associated with an idle state, i.e. there is no event at that time.

Whenever an event starts or ends a flag is shown.

In the middle of an event, the line shows a different color. Colors are assigned depending on the event type.
The info panel contains the legend of the assigned colors to each event type.

What/Where Timing Colors

Custom palette
. generate_fragment

partial_surm

M rmerge

Figure 30: Trace interpretation

6.4 Analysis

This section gives some tips to analyze a COMPSs trace from two different points of view: graphically and
numerically.

6.4.1 Graphical Analysis

The main concept is that computational events, the task events in this case, must be well distributed among all
workers to have a good parallelism, and the duration of task events should be also balanced, this means, the
duration of computational bursts.

In the previous trace view, all the tasks of type “generate fragment” in dark blue appear to be well distributed
among the four workers, each worker executor executes two “generate fragment” tasks.

Next, a set of “partial sum” tasks, coloured in white, are distributed across the four workers. In particular, eight
“partial sum” tasks are executed per kmeans iteration, so each worker executor executes two “partial sum” tasks
per iteration. This trace shows the execution of ten iterations. Note that all “partial sum” tasks are very similar
in time. This means that there is not much variability among them, and consequently not imbalance.

Finally, there is a “merge” task at the end of each iteration (coloured in red). This task is executed by one of the
worker executors, and gathers the result from the previous eight “partial sum” tasks. This task can be better
displayed thanks to zoom.

190 Chapter 6. Tracing

COMPSs Documentation,

2.9

What /Where Timing Colors

Custom palette
. generate_fragment

partial_surm

. merge

Figure 31: Basic trace view of a Kmeans execution.

0
00000000
S
L 2
=
&
,,7,-"i:
@
L 2
— 9=
L 2
: :’?’f‘;“.f
L 7
&
&
FeFed "“
L 2

COMPSs Tasks @ kmeans.py_com,

[1]

Figure 33: Zoomed in view of a Kmeans execution (first iteration).

6.4. Analysis

191

COMPSs Documentation, 2.9

6.4.2 Numerical Analysis

Here we analize the Kmeans trace numerically.

COMPSs Tasks @ kmeans.py_comp:
ror

Ipart'\‘al’sm —
Copy Ctrl+C

Clone

Rename F2

O Fit Time Scale

Fit Semantic Scale >

Fit Objects
Select Objects...
Communication Lines
Paint A >
aint As O ‘
Drawmode >
Pixel Size »
Object Labels >
Object Axis >
Run >
Synchronize >
Save >
Timing Ctri+T

Info Panel

Figure 34: Original sample trace of a Kmeans execution to be analyzed

Paraver offers the possibility of having different histograms of the trace events. Click the “New Histogram” button
in the main window and accept the default options in the “New Histogram” window that will appear.

l_3© X &

Figure 35: Paraver Menu - New Histogram

After that, the following table is shown. In this case for each worker, the time spent executing each type of task is
shown in gradient from light green for lower values to dark-blue for higher ones. The values coresponding to the
colours and task names can be shown by clicking in the gray magnifying glass button. And the task corresponding
to each task column can also be shown by clicking in the colur bars button.

The time spent executing each type of task is shown, and task names appear in the same color than in the trace
view. The color of the cells in a row is kept, conforming a color based histogram.

The previous table also gives, at the end of each column, some extra statistical information for each type of tasks
(as the total, average, maximum or minimum values, etc.).

In the window properties of the main window (Button Figure 39), it is possible to change the semantic of the
statistics to see other factors rather than the time, for example, the number of bursts (Figure 40).

In the same way as before, the following table shows for each worker the number of bursts for each type of task,
this is, the number or tasks executed of each type. Notice the gradient scale from light-green to dark-blue changes
with the new values.

192 Chapter 6. Tracing

COMPSs Documentation,

2.9

Timeline Selection

Control Timeline

Data Timeline

3D Timeline

Timne Range

Begin

COMPSS Tasks

COMPSS Tasks

None

(@) current Timeline

AllTrace

() Manual selection

Auto Fit

© cancelar| |/ Aceptag

3

Figure 36: Histogram configuration (Accept default values)

partial_sum

IE B8 O & M HBMMNAEI% .befaul v 2

MAIN APP (1.1.1)
RUNTIMEAP (1.1.2)
RUNTIMETD (1.1.3)

WORKER MAIN (2.1.1)
RUNTIMEFS (2.1.2)
RUNTIME TIMER (2.1.3)
EXECUTOR (2.2.1)
EXECUTOR (2.2.2)
EXECUTOR (2.2.3)
EXECUTOR (2.2.4)

Total

Average

Maximum

Minimum
StDev

Avg/Max

187,176,261 us
37,435,252.20 us
48,012,074 us
12,465 us
18,726,630.08 us
078

445,527,280us 696,977 us
89,105,456 us 348,488.50 us
113,531,033us 608,829Us

62,958 us 88,148 us
44,535,380.06 us 260,340.50 us
0.78 057

Figure 37: Kmeans histogram corresponding to previous trace

generate_fragment

Figure 38: Kmeans numerical histogram corresponding to previous trace

6.4.

Analysis

193

COMPSs Documentation,

2.9

X

File Hints Help

D@BE X « @

Works paces

Useful+PAPI counters +Resources+Flush

Window browser

kmeans.py_compss.prv

—Im= COoMPss Tasks

B New Histogram #1

Files & Window Properties

= o)

Window Properties
~ B opt
~ B compss I

> B3 Bindings
~ ™ Dependencies
> M extrae
> B java_GAT
~ B paraver
A ll=| cfgs
> B comm
> B python

2dp_runtime_state.cfg

2dp_tasks.cfg

Paraver files hd

[H9) Automnatic Redraw Force Redraw

Figure 39: Paraver window properties button

194

Chapter 6. Tracing

COMPSs Documentation,

2.9

File Hints Help

DRE X & @

Workspaces

Useful+PAPI counters+Resources+Hush

Window browser

= COMPSs Tasks

kmeans.py_compss.prv

MNew Histogram #1

Files & Window Properties

(&Y = |

Name
Begin time
End time
Control
B statistics
Type

Minimum Gradient
Maximum Gradient

Data

Statistic Time

New Histogram #1
0.00 us
180,438,447.00 us

Semantic

<

@ Automatic Redraw

Time

% Time

% Time Not Zero
% Window Time

% # Bursts

Integral

Average value
Maximum
Minimum

Average Burst Time
Stdev Burst Time
Average per Burst

Average value!'=0

Average per Burst!= 0

#Bursts!=0

Figure 40: Paraver histogram options menu

€ B3 Q& W HMI® I % wDefaukt v

MAIN APP (1.1.1)
RUNTIME AP (1.1.2)
RUNTIME TD (1.1.3)

WORKER MAIN (2.1.1)
RUNTIMEFS (2.1.2)
RUNTIME TIMER (2.1.3)

EXECUTOR (2.2.1)

EXECUTOR (2.2.2)

EXECUTOR (2.2.3)

EXECUTOR (2.2.4)

Total
Average

Maximum

Minimum

StDev

Avg/Max

gme partial_sum m
T

20

20
16 160 20
320 32 10
8 80 10
2 20 10
2.40 24 0
0.40 0.40 1

generate_fragment

Figure 41: Kmeans histogram with the number of bursts

6.4.

Analysis

195

COMPSs Documentation, 2.9

6.5 PAPI: Hardware Counters

The applications instrumentation supports hardware counters through the performance API (PAPI). In order to
use it, PAPI needs to be present on the machine before installing COMPSs.

During COMPSs installation it is possible to check if PAPI has been detected in the Extrae config report:

Package configuration for Extrae VERSION based on extrae/trunk rev. XXXX:
Installation prefix: /opt/COMPSs/Dependencies/extrae
Cross compilation: no

Performance counters: yes
Performance API: PAPI
PAPI home: /usr
Sampling support: yes

Caution: PAPI detection is only performed in the machine where COMPSs is installed. User is responsible
of providing a valid PAPT installation to the worker machines to be used (if they are different from the master),
otherwise workers will crash because of the missing libpapi.so.

PAPI installation and requirements depend on the OS. On Ubuntu 14.04 it is available under papi-tools package;
on OpenSuse libpapi, papi and papi-devel packages. For more information check https://icl.cs.utk.edu/projects/
papi/wiki/Installing PAPI.

Extrae only supports 8 active hardware counters at the same time. Both basic and advanced mode have the same
default counters list:

PAPI_TOT INS Instructions completed

PAPI_TOT_CYC Total cycles

PAPI_ LD INS Load instructions

PAPI SR INS Store instructions

PAPI BR_ UCN Unconditional branch instructions

PAPI _BR_CN Conditional branch instructions

PAPI _VEC _SP Single precision vector/SIMD instructions
RESOURCE_STALLS Cycles Allocation is stalled due to Resource Related reason

The XML config file contains a secondary set of counters. In order to activate it just change the starting-set-
distribution from 2 to 1 under the cpu tag. The second set provides the following information:

PAPI_TOT INS Instructions completed
PAPI_TOT_ CYC Total cycles
PAPI L1 DCM Level 1 data cache misses
PAPI L2 DCM Level 2 data cache misses
PAPI L3 TCM Level 3 cache misses
PAPI_FP _INS Floating point instructions

Tip: To find the available PAPI counters on a given computer issue the command:

$ papi_avail -a

And for more hardware counters:

$ papi_native_avail

196 Chapter 6. Tracing

https://icl.cs.utk.edu/projects/papi/wiki/Installing_PAPI
https://icl.cs.utk.edu/projects/papi/wiki/Installing_PAPI

COMPSs Documentation, 2.9

To further customize the tracked counters, modify the XML to suit your needs. For more information about
Extrae’s XML configuration refer to https://www.bsc.es/computer-sciences,/performance-tools/trace-generation/

extrae/extrae-user-guide.

6.6 Paraver: configurations

Table 17, Table 18 and Table 19 provide information about the different pre-build configurations that are distributed
with COMPSs and that can be found under the /opt/COMPSs/Dependencies/ paraver/cfgs/ folder. The cfgs
folder contains all the basic views, the python folder contains the configurations for Python events, and finally the
comm folder contains the configurations related to communications.

Additionally, it can be shown the data transfers and the task dependencies. To see them it is needed to show
communication lines in the paraver windows, to only see the task dependencies are needed to put in Filter >
Communications > Comm size, the size equal to 0. Some of the dependencies between tasks may be lost.

Table 17: General paraver configurations for COMPSs Applications

Configuration File Name

Description

2dp _runtime_state.cfg

2D plot of runtime state

2dp _tasks.cfg

2D plot of tasks duration

3dh_duration runtime.cfg

3D Histogram of runtime execution

3dh duration tasks.cfg

3D Histogram of tasks duration

compss__cpu__constraints.cfg

Shows tasks cpu constraints

compss__executors.cfg

Shows the number of executor threads in each node

compss__runtime.cfg

Shows COMPSs Runtime events (master and workers)

compss_runtime master.cfg

Shows COMPSs Runtime master events

compss_ storage.cfg

Shows COMPSs persistent storage events

compss_tasks and binding.cfg

Shows COMPSs Binding events (master and workers) and tasks execution

compss_tasks and _runtime.cfg

Shows COMPSs Runtime events (master and workers) and tasks execution

compss__tasks.cfg

Shows tasks execution and tasks instantiation in master nodes

compss__tasks cpu_ affinity.cfg

Shows tasks CPU affinity

compss_tasks gpu_ affinity.cfg

Shows tasks GPU affinity

compss__tasks id.cfg

Shows tasks execution by task id

compss_tasks runtime & agents.cfg

Shows COMPSs Agent and Runtime events and tasks execution

compss_ waiting tasks.cfg

Shows waiting tasks

histograms HW _counters.cfg

Shows hardware counters histograms

instantiation time.cfg

Shows the instantiation time

Interval between runtime.cfg

Interval between runtime events

nb_executing tasks.cfg

Number of executing tasks

nb_requested cpus.cfg

Number of requested CPUs

nb_requested disk bw.cfg

Number of requested disk bandwidth

nb_requested gpus.cfg

Number of requested GPUs

nb_executing mem.cfg

Number of executing memory

nb tasks in graph.cfg

Number of executing tasks

number _executors.cfg

Number of executors

task duration.cfg

Shows tasks duration

thread cpu.cfg

Shows the initial executing CPU

thread identifiers.cfg

Shows the type of each thread

time btw_tasks.cfg

Shows the time between tasks

user _events.cfg

Shows the user events (type 9000000)

6.6. Paraver: configurations

197

https://www.bsc.es/computer-sciences/performance-tools/trace-generation/extrae/extrae-user-guide
https://www.bsc.es/computer-sciences/performance-tools/trace-generation/extrae/extrae-user-guide

COMPSs Documentation, 2.9

Table 18: Available paraver configurations for Python events of
COMPSs Applications

Configuration File Name Description

3dh events inside task.cfg | 3D Histogram of python events

3dh_tasks phase.cfg 3D Histogram of execution functions

deserialization _object num- | Shows the numbers of the objects that are being deserialized

ber.cfg

deserialization _size.cfg Shows the size of the objects that are being deserialized (Bytes)

events inside tasks.cfg Events showing python information such as user function execution time, mod-
ules imports, or serializations

events _in_workers.cfg Events showing python binding information in worker

nb_ user code executing.cfg | Number of user code executing

serdes bw.cfg Serialization and deserializations bandwidth (MB/s)

serdes cahce bw.cfg Serialization and deserializations to cache bandwidth (MB/s)

serialization object num- Shows the numbers of the objects that are being serialized

ber.cfg

serialization _size.cfg Shows the size of the objects that are being serialized (Bytes)

nb_user code executing.cfg | Number of user code executing

tasks cpu_ affinity.cfg Events showing the CPU affinity of the tasks (shows only the first core if
multiple assigned)

tasks gpu affinity.cfg Events showing the GPU affinity of the tasks (shows ounly the first GPU if
multiple assigned)

Time between events in- Shows the time between events inside tasks

side tasks.cfg

Table 19: Available paraver configurations for COMPSs Applica-

tions
Configuration File Name Description
communication matrix.cfg Table view of communications between each node
compss__data_transfers.cfg Shows data transfers for each task’s parameter
compss_tasksID transfers.cfg | Task’s transfers request for each task (task with its IDs are also shown)
process__bandwith.cfg Send/Receive bandwith table for each node
receive bandwith.cfg Receive bandwidth view for each node
send bandwith.cfg Send bandwidth view for each node
sr_bandwith.cfg Send/Receive bandwith view for each node

6.7 User Events in Python

Users can emit custom events inside their python tasks. Thanks to the fact that python is not a compiled language,
users can emit events inside their own tasks using the available EXTRAE instrumentation object because it is
already loaded and available in the PYTHONPATH when running with tracing enabled.

To emit an event first import pyextrae:

e import pyextrae.sequential as pyextrae to emit events from the main code.
e import pyextrae.multiprocessing as pyextrae to emit events within tasks code.

And then just use the call pyextrae.event (type, id) (or pyextrae.eventandcounters (type, id) if you also
want to emit PAPI hardware counters).

Tip: It must be used a type number higher than 8000050 in order to avoid type conflicts.

We suggest to use 9000000 since we provide the user_events.cfg configuration file to visualize the user events
of this type in PARAVER.

198 Chapter 6. Tracing

COMPSs Documentation, 2.9

6.7.1 Events in main code

The following code snippet shows how to emit an event from the main code (or any other code which is not within
a task). In this case it is necessary to import pyextrae.sequential.

from pycompss.api.api import compss_wait_on
from pycompss.api.task import task
import pyextrae.sequential as pyextrae

Otask(returns=1)
def increment(value):
return value + 1

def main(Q):
value = 1
pyextrae.eventandcounters (9000000, 2)
result = increment(value)
result = compss_wait_on(result)
pyextrae.eventandcounters (9000000, 0)

print("result: " + str(result))
if __name__ == "__main__":
main()

6.7.2 Events in task code

The following code snippet shows how to emit an event from the task code. In this case it is necessary to import
pyextrae.multiprocessing.

from pycompss.api.task import task

Otask()

def compute():
import pyextrae.multiprocessing as pyextrae
pyextrae.eventandcounters (9000000, 2)

Code to wrap within event 2

pyextrae.eventandcounters (9000000, 0)

Caution: Please, note that the import pyextrae.multiprocessing as pyextrae is performed within the
task. If the user needs to add more events to tasks within the same module (excluding the applicatin main
module) and wants to put this import in the top of the module making pyextrae available for all of them, it
is necessary to enable the tracing hook on the tasks that emit events:

from pycompss.api.task import task
import pyextrae.multiprocessing as pyextrae

Otask(tracing_hook=True)
def compute():
pyextrae.eventandcounters (9000000, 2)

Code to wrap within event 2

pyextrae.eventandcounters (9000000, 0)

6.7. User Events in Python 199

COMPSs Documentation, 2.9

The tracing_hook is disabled by default in order to reduce the overhead introduced by tracing avoiding to
intercept all function calls within the task code.

6.7.3 Result trace
The events will appear automatically on the generated trace. In order to visualize them, just load the user_-
events.cfg configuration file in PARAVER.

If a different type value is choosen, take the same user_events.cfg and go to Window Properties -> Filter
-> Events -> Event Type and change the value labeled Types for your custom events type.

Tip: If you want to name the events, you will need to manually add them to the .pcf file with the corresponding
name for each value.

6.7.4 Practical example

Consider the following application where we define an event in the main code (1) and another within the task (2).
The increment task is invoked 8 times (with a mimic computation time of the value received as parameter.)

from pycompss.api.api import compss_wait_on
from pycompss.api.task import task
import time

Otask(returns=1)

def increment(value):
import pyextrae.multiprocessing as pyextrae
pyextrae.eventandcounters (9000000, 2)
time.sleep(value) # mimic some computation
pyextrae.eventandcounters (9000000, 0)
return value + 1

def main():
import pyextrae.sequential as pyextrae
elements = [1, 2, 3, 4, 5, 6, 7, 8]
results = []
pyextrae.eventandcounters (9000000, 1)
for element in elements:
results.append(increment (element))
results = compss_wait_on(results)
pyextrae.eventandcounters (9000000, 0)
print("results: " + str(results))

".

if __name__ == "__main__

main()

After launching with tracing enabled (-t flag), the trace has been generated into the logs folder:

e $HOME/.COMPSs/events.py_01/trace if using runcompss.
e $HOME/.COMPSs/<J0OB_ID>/trace if using enqueue_compss.

Now it is time to modify the .pcf file including the folling text at the end of the file with your favourite text
editor:

200 Chapter 6. Tracing

COMPSs Documentation, 2.9

EVENT_TYPE

0 9000000 User events
VALUES

0 End

1 Main code event

2 Task event

Caution: Keep value 0 with the End message.

Add all values defined in the application with a descriptive short name to ease the event identification in
PARAVER.

Open PARAVER, load the tracefile (.prv) and open the user_events.cfg configuration file. The result (see
Figure 42) shows that there are 8 “Task event” (in white), and 1 “Main code event” (in blue) as we expected. Their
length can be seen with the event flags (green flags), and measured by double clicking on the event of interest.

User events @ increment.py_compss.prv. VoA o

Figure 42: User events trace file

Paraver uses by default the .pcf with the same name as the tracefile so if you add them to one, you can reuse it
just by changing its name to the tracefile.

6.7. User Events in Python 201

COMPSs Documentation, 2.9

202 Chapter 6. Tracing

Chapter 7

Persistent Storage

COMPSs is able to interact with Persistent Storage frameworks. To this end, it is necessary to take some consid-
erations in the application code and on its execution. This section is intended to walk you through the COMPSs’
storage interface and its integration with some Persistent Storage frameworks.

7.1 First steps

COMPSs relies on a Storage API to enable the interation with persistent storage frameworks (Figure 43), which
is composed by two main modules: Storage Object Interface (SOI) and Storage Runtime Interface (SRI)

COMPSs Application (Java) PyCOMPSs Application (Python)

PyCOMPSs

COMPSs

aaaaaaaaaaaaaaaaaaaaaaaaaaaaa

Storage API \/ \/) ‘E

Figure 43: COMPSs with persistent storage architecture

Any COMPSs application aimed at using a persistent storage framework has to include calls to:

e The SOI in order to define the data model (see Defining the data model), and relies on COMPSs, which
interacts with the persistent storage framework through the SRI.

e The SRI in order to interact directly with the storage backend (e.g. retrieve data, etc.) (see Interacting with
the persistent storage).

In addition, it must be taken into account that the execution of an application using a persistent storage framework
requires some specific flags in runcompss and enqueue_compss (see Running with persistent storage).

Currently, there exists storage interfaces for dataClay, Hecuba and Redis. They are thoroughly described from the
developer and user point of view in Sections:

203

https://www.bsc.es/research-and-development/software-and-apps/software-list/dataclay
https://www.bsc.es/research-and-development/software-and-apps/software-list/hecuba
https://redis.io/

COMPSs Documentation, 2.9

e COMPSs + dataClay
e COMPSs + Hecuba
e COMPSs + Redis

The interface is open to any other storage framework by implementing the required functionalities described in
Implement your own Storage interface for COMPSs.

7.1.1 Defining the data model

The data model consists of a set of related classes programmed in one of the supported languages aimed are
representing the objects used in the application (e.g. in a wordcount application, the data model would be text).

In order to define that the application objects are going to be stored in the underlying persistent storage backend,
the data model must be enriched with the Storage Object Interface (SOI).

The SOI provides a set of functionalities that all objects stored in the persistent storage backend will need.
Consequently, the user must inherit the SOI on its data model classes, and give some insights of the class attributes.

The following subsections detail how to enrich the data model in Java and Python applications.

7.1.1.1 Java

To define that a class objects are going to be stored in the persistent storage backend, the class must extend the
StorageObject class (as well as implement the Serializable interface). This class is provided by the persistent
storage backend.

import storage.StorageObject;
import java.io.Serializable;

class MyClass extends StorageObject implements Serializable {
private double[] vector;

VAT
* frite here your class-specific
* constructors, attributes and methods.

*/

The StorageObject object enriches the class with some methods that allow the user to interact with the persistent
storage backend. These methods can be found in Table 20.

204 Chapter 7. Persistent Storage

COMPSs Documentation, 2.9

Table 20: Available methods from StorageObject

Name

Returns Comments

makePersistent(String id) Nothing

Inserts the object in the database
with the id.

If id is null, a random UUID will
be computed instead.

deletePersistent() Nothing

Removes the object from the
storage.

It does nothing if it was not
already there.

getID()

String

Returns the current object
identifier if the object is not
persistent (null instead).

These functions can be used from the application in order to persist an object (pushing the object into the persistent
storage) with make_persistent, remove it from the persistent storage with delete_persistent or getting the
object identifier with getID for the later interaction with the storage backend.

import MyPackage.MyClass;

class Test{
/7
public static void main(String args[]){

/o

MyClass my_obj = new MyClass();

my_obj.matrix = new double[10];

my_obj.makePersistent () ; // make persistent without parameter
String obj_id = my_obj.getID(); // get the idenfier provided by the storage framework
/)

my_obj.deletePersistent();

/o

MyClass my_obj2 = new MyClass();

my_obj2.matrix = new double[20];

my_obj2.makePersistent("obj2"); // make persistent providing tdentifier
/o

my_obj2.delete_persistent();

/o

7.1. First steps 205

COMPSs Documentation, 2.9

7.1.1.2 Python

To define that a class objects are going to be stored in the persistent storage backend, the class must inherit the
StorageObject class. This class is provided by the persistent storage backend.

from storage.api import StorageObject

class MyClass(StorageObject):

In addition, the user has to give details about the class attributes using the class documentation. For example,
if the user wants to define a class containing a numpy ndarray as attribute, the user has to specify this attribute
starting with @ClassField followed by the attribute name and type:

from storage.api import StorageObject

class MyClass(StorageObject):

nnn

0ClassField matrixz numpy.ndarray
nimnn

pass

Important: Methods inside the class are not supported by all storage backends. dataClay is currently the only
backend that provides support for them (see Enabling COMPSs applications with dataClay).

Then, the user can use the instantiated object normally:

from MyFile import MyClass
import numpy as np

my_obj = MyClass()
my_obj.matrix = np.random.rand(10, 2)

The following code snippet gives some examples of several types of attributes:

from storage.api import StorageObject

class MyClass(StorageObject):
Elemmental types
0ClassField fieldl int
@ClassField field2 str
@ClassField field3 mp.ndarray

Structured types
0ClassField field4 list <int>
@ClassField fieldd set <list<float>>

Another class instance as attribute
0ClassField field6 AnotherClassName

Complex dictionaries:
0ClassField field7 dict <<int,str>, dict<<int>, list<sir>>>

0ClassField field8 dict <<int>, AnotherClassName>

Dictionary with structured value:

(continues on next page)

206 Chapter 7. Persistent Storage

COMPSs Documentation, 2.9

(continued from previous page)

0ClassField field9 dict <<kl: int, k2: int>, tuple<vl: int, v2: float, v3: text>>
Plain definition of the same dictionary:
0ClassField fieldl0 dict <<int,int>, str>

nnn

pass

Finally, the StorageObject class includes some functions in the class that will be available from the instantiated
objects (Table 21).

Table 21: Available methods from StorageObject in Python

Name Returns Comments
make persistent(String id) Nothing

Inserts the object in the database
with the id.

If id is null, a random UUID will
be computed instead.

delete persistent|() Nothing
Removes the object from the
storage.
It does nothing if it was not
already there.

getID() String

Returns the current object
identifier if the object is not
persistent (None instead).

These functions can be used from the application in order to persist an object (pushing the object into the persistent
storage) with make_persistent, remove it from the persistent storage with delete_persistent or getting the
object identifier with getID for the later interaction with the storage backend.

import numpy as np

my_obj = MyClass()

my_obj.matrix = np.random.rand(10, 2)

my_obj.make_persistent() # make persistent without parameter

obj_id = my_obj.getID() # get the tdenfier provided by the storage framework

my_obj.delete_persistent ()
my_obj2 = MyClass()
my_obj2.matrix = np.random.rand(10, 3)

my_obj2.make_persistent('obj2') # make persistent providing tdentifier

my_obj2.delete_persistent ()

7.1. First steps 207

COMPSs Documentation, 2.9

7.1.1.3 C/C++

Unsupported
Persistent storage is not supported with C/C++ COMPSs applications.

7.1.2 Interacting with the persistent storage
The Storage Runtime Interface (SRI) provides some functions to interact with the storage backend. All of
them are aimed at enabling the COMPSs runtime to deal with persistent data across the infrastructure.

However, the function to retrieve an object from the storage backend from its identifier can be useful for the
user. Consequently, users can import the SRI and use the getByID function when needed necessary. This function
requires a String parameter with the object identifier, and returns the object associated with that identifier (null
or None otherwise).

The following subsections detail how to call the getByID function in Java and Python applications.

7.1.2.1 Java

Import the getByID function from the storage api and use it:

import storage.Storageltf;
import MyPackage.MyClass;

class Test{

/7

public static void main(String args[]){
/)
obj = StoragelItf.getByID("my_obj");
/7

}

7.1.2.2 Python

Import the getByID function from the storage api and use it:

from storage.api import getByID

obj = getByID('my_obj')

208 Chapter 7. Persistent Storage

COMPSs Documentation, 2.9

7.1.2.3 C/C++

Unsupported
Persistent storage is not supported with C/C++ COMPSs applications.

7.1.3 Running with persistent storage

7.1.3.1 Local

In order to run a COMPSs application locally, the runcompss command is used.

The runcompss command includes some flags to execute the application considering a running persistent storage
framework. These flags are: --classpath, --pythonpath and --storage_conf.

Consequently, the runcompss requirements to run an application with a running persistent storage backend are:

--classpath Add the --classpath=${path_to_storage_api.jar} flag to the runcompss
command.

--pythonpath If you are running a python application, also add the --pythonpath=${path_-
to_the_storage_apil}/python flag to the runcompss command.

--storage conf Add the flag --storage_conf=${path_to_your_storage_conf_dot_cfg_file}
to the runcompss command. The storage configuration file (usually storage_-
conf.cfg) contains the configuration parameters needed by the storage frame-
work for the execution (it depends on the storage framework).

As usual, the project.xml and resources.xml files must be correctly set.

7.1.3.2 Supercomputer

In order to run a COMPSs application in a Supercomputer or cluster, the enqueue_compss command is used.

The enqueue_compss command includes some flags to execute the application considering a running persistent
storage framework. These flags are: --classpath, --pythonpath, --storage-home and --storage-props.

Consequently, the enqueue_compss requirements to run an application with a running persistent storage backend
are:

--classpath --classpath=${path_to_storage_interface.jar} As with the runcompss
command, the JAR with the storage API must be specified. It is usally available
in a environment variable (check the persistent storage framework).

--pythonpath If you are running a Python application, also add the --pythonpath=${path_-
to_the_storage_apil}/python flag. It is usally available in a environment vari-
able (check the persistent storage framework).

--storage-home --storage-home=${path_to_the_storage_api} This must point to the root of
the storage folder. This folder must contain a scripts folder where the scripts to
start and stop the persistent framework are. It is usally available in a environment
variable (check the persistent storage framework).

--storage-props --storage-props=${path_to_the_storage_props_file} This must point to
the storage properties configuration file (usually storage_props.cfg) It contains
the configuration parameters needed by the storage framework for the execution
(it depends on the storage framework).

7.1. First steps 209

COMPSs Documentation, 2.9

7.2 COMPSs + dataClay

Warning: Under construction

7.2.1 COMPSs + dataClay Dependencies

7.2.1.1 dataClay

7.2.1.2 Other dependencies

7.2.2 Enabling COMPSs applications with dataClay
7.2.2.1 Java

7.2.2.2 Python

7.2.2.3 C/C++

Unsupported
C/C++ COMPSs applications are not supported with dataClay.

7.2.3 Executing a COMPSs application with dataClay
7.2.3.1 Launching using an existing dataClay deployment

7.2.3.2 Launching on queue system based environments

7.3 COMPSs + Hecuba

Warning: Under construction

7.3.1 COMPSs + Hecuba Dependencies
7.3.1.1 Hecuba

7.3.1.2 Other dependencies
7.3.2 Enabling COMPSs applications with Hecuba

7.3.2.1 Java

Unsupported
Java COMPSs applications are not supported with Hecuba.

210

Chapter 7. Persistent Storage

COMPSs Documentation, 2.9

7.3.2.2 Python

7.3.2.3 C/C++

Unsupported

C/C++ COMPSs applications are not supported with Hecuba.

7.3.3 Executing a COMPSs application with Hecuba

7.3.3.1 Launching using an existing Hecuba deployment

7.3.3.2 Launching on queue system based environments

7.4

COMPSs + Redis

COMPSs provides a built-in interface to use Redis as persistent storage from COMPSs’ applications.

Note

: We assume that COMPSs is already installed. See Installation and Administration

The next subsections focus on how to install the Redis utilities and the storage API for COMPSs.

Hint:

1

It is advisable to read the Redis Cluster tutorial for beginners" in order to understand all the terminology

that is used.

7.4.1 COMPSs + Redis Dependencies

The required dependencies are:

Redis Server
Redis Cluster script
COMPSs-Redis Bundle

7.4.1.1 Redis Server

redis-server is the core Redis program. It allows to create standalone Redis instances that may form part of a

cluste

1.

2.

r in the future. redis-server can be obtained by following these steps:

Go to https://redis.io/download and download the last stable version. This should download a
redis-${version}.tar.gz file to your computer, where ${version} is the current latest version.

Unpack the compressed file to some directory, open a terminal on it and then type sudo make install if you
want to install Redis for all users. If you want to have it installed only for yourself you can simply type make
redis-server. This will leave the redis-server executable file inside the directory src, allowing you to
move it to a more convenient place. By convenient place we mean a folder that is in your PATH environment
variable. It is advisable to not delete the uncompressed folder yet.

If you want to be sure that Redis will work well on your machine then you can type make test. This will
run a very exhaustive test suite on Redis features.

Important: Do not delete the uncompressed folder yet.

I https://redis.io/topics/cluster-tutorial

7.4.

COMPSs + Redis 211

https://redis.io/topics/cluster-tutorial

COMPSs Documentation, 2.9

7.4.1.2 Redis Cluster script

Redis needs an additional script to form a cluster from various Redis instances. This script is called redis-trib.rb
and can be found in the same tar.gz file that contains the sources to compile redis-server in src/redis-trib.rb.
Two things must be done to make this script work:

1. Move it to a convenient folder. By convenient folder we mean a folder that is in your PATH environment
variable.

2. Make sure that you have Ruby and gem installed. Type gem install redis.

3. In order to use COMPSs + Redis with Python you must also install the redis and redis-py-cluster PyPI
packages.

Hint: It is also advisable to have the PyPI package hiredis, which is a library that makes the interactions
with the storage to go faster.

7.4.1.3 COMPSs-Redis Bundle

COMPSs-Redis Bundle is a software package that contains the following:

1. A java JAR file named compss-redisPSCO.jar. This JAR contains the implementation of a Storage Object
that interacts with a given Redis backend. We will discuss the details later.

2. A folder named scripts. This folder contains a bunch of scripts that allows a COMPSs-Redis app to create
a custom, in-place cluster for the application.

3. A folder named python that contains the Python equivalent to compss-redisPSCO. jar

This package can be obtained from the COMPSs source as follows:

1. Go to trunk/utils/storage/redisPSCO
2. Type ./make_bundle. This will leave a folder named COMPSs-Redis-bundle with all the bundle contents.

7.4.2 Enabling COMPSs applications with Redis

7.4.2.1 Java

This section describes how to develop Java applications with the Redis storage. The application project should have
the dependency induced by compss-redisPSCO. jar satisfied. That is, it should be included in the application’s
pom.xml if you are using Maven, or it should be listed in the dependencies section of the used development tool.

The application is almost identical to a regular COMPSs application except for the presence of Storage Objects.
A Storage Object is an object that it is capable to interact with the storage backend. If a custom object extends
the Redis Storage Object and implements the Serializable interface then it will be ready to be stored and retrieved
from a Redis database. An example signature could be the following:

import storage.StorageObject;
import java.io.Serializable;

/¥

* 4 PSCO that contains a KD point

*/

class RedisPoint

extends StorageObject implements Serializable {

// Coordinates of our point

private double[] coordinates;

/¥ *

* Write here your class-spectfic

¥ constructors, attributes and methods.

(continues on next page)

212 Chapter 7. Persistent Storage

COMPSs Documentation, 2.9

(continued from previous page)

*/
double getManhattanDistance(RedisPoint other) {

}
X

The StorageObject object has some inherited methods that allow the user to write custom objects that interact
with the Redis backend. These methods can be found in Table 22.

Table 22: Available methods from StorageObject

Name Returns Comments
makePersistent(String id) Nothing

Inserts the object in the database
with the id.

If id is null, a random UUID will
be computed instead.

deletePersistent() Nothing
Removes the object from the
storage.
It does nothing if it was not
already there.

getID() String

Returns the current object
identifier if the object is not
persistent (null instead).

Caution: Redis Storage Objects that are used as INOUTs must be manually updated. This is due to the
fact that COMPSs does not know the exact effects of the interaction between the object and the storage, so
the runtime cannot know if it is necessary to call makePersistent after having used an INOUT or not (other
storage approaches do live modifications to its storage objects). The followingexample illustrates this situation:

VAL

* 4 1s passed as INOUT

*/

void accumulativePointSum(RedisPoint a, RedisPoint b) {
// This method computes the coordinate-wise sum between a and b
// and leaves the result in a
for(int i=0; i<a.getCoordinates().length; ++i) {

a.setComponent (i, a.getComponent(i) + b.getComponent(i));

}

// Delete the object from the storage and

// re-insert the object with the same old tdentifier
String objectIdentifier = a.getID();

// Redis contains the old verstion of the object
a.deletePersistent();

// Now we will insert the updated one
a.makePersistent (objectIdentifier);

}

If the last three statements were not present, the changes would never be reflected on the RedisPoint a object.

7.4. COMPSs + Redis 213

COMPSs Documentation, 2.9

7.4.2.2 Python

Redis is also available for Python. As happens with Java, we first need to define a custom Storage Object. Let’s
suppose that we want to write an application that multiplies two matrices A, and B by blocks. We can define a
Block object that lets us store and write matrix blocks in our Redis backend:

from storage.storage_object import StorageObject
import storage.api

class Block(StorageQObject):
def __init__(self, block):
super (Block, self).__init__Q)
self.block = block

def get_block(self):
return self.block

def set_block(self, new_block):
self.block = new_block

Let’s suppose that we are multiplying our matrices in the usual blocked way:

for i in range(MSIZE):
for j in range(MSIZE):
for k in range(MSIZE):
multiply (A[i] [k], B[k]1[j1, CLil[j])

Where A and B are Block objects and C' is a regular Python object (e.g: a Numpy matrix), then we can define
multiply as a task as follows:

@task(c = INOUT)
def multiply(a_object, b_object, c, MKLProc):
c += a_object.block * b_object.block

Let’s also suppose that we are interested to store the final result in our storage. A possible solution is the following:

for i in range(MSIZE):
for j in range(MSIZE):
persist_result(C[i] [j1)

Where persist_result can be defined as a task as follows:

Qtask()

def persist_result(obj):
to_persist = Block(obj)
to_persist.make_persistent ()

This way is preferred for two main reasons:

e we avoid to bring the resulting matrix to the master node,
e and we can exploit the data locality by executing the task in the node where last version of obj is located.

214 Chapter 7. Persistent Storage

COMPSs Documentation, 2.9

7.4.2.3 C/C++

Unsupported
C/C++ COMPSs applications are not supported with Redis.

7.4.3 Executing a COMPSs application with Redis

7.4.3.1 Launching using an existing Redis Cluster

If there is already a running Redis Cluster on the node/s where the COMPSs application will run then only the
following steps must be followed:

1. Create a storage_conf.cfg file that lists, one per line, the nodes where the storage is present. Only
hostnames or IPs are needed, ports are not necessary here.

2. Add the flag --classpath=${path_to_COMPSs-redisPSCO.jar} to the runcompss command that launches
the application.

3. Add the flag --storage_conf=${path_to_your_storage_conf_dot_cfg_file} to the runcompss command
that launches the application.

4. If you are running a python app, also add the --pythonpath=${app_path}:${path_to_the_bundle_-
folder}/python flag to the runcompss command that launches the application.

As usual, the project.xml and resources.xml files must be correctly set. It must be noted that there can
be Redis nodes that are not COMPSs nodes (although this is a highly unrecommended practice). As a
requirement, there must be at least one Redis instance on each COMPSs node listening to the official
Redis port 63792. This is required because nodes without running Redis instances would cause a great amount
of transfers (they will always need data that must be transferred from another node). Also, any locality policy
will likely cause this node to have a very low workload, rendering it almost useless.

7.4.3.2 Launching on queue system based environments

COMPSs-Redis-Bundle also includes a collection of scripts that allow the user to create an in-place Redis cluster
with his/her COMPSs application. These scripts will create a cluster using only the COMPSs nodes provided by
the queue system (e.g. SLURM, PBS, etc.). Some parameters can be tuned by the user via a storage_props.cfg
file. This file must have the following form:

REDIS_HOME=some_path
REDIS_NODE_TIMEOUT=some_nonnegative_integer_value
REDIS_REPLICAS=some_nonnegative_integer_value

There are some observations regarding to this configuration file:

REDIS HOME Must be equal to a path to some location that is not shared between nodes. This is the location
where the Redis sandboxes for the instances will be created.

REDIS NODE_ TIMEOUT Must be a nonnegative integer number that represents the amount of milliseconds
that must pass before Redis declares the cluster broken in the case that some instance is not available.
REDIS REPLICAS Must be equal to a nonnegative integer. This value will represent the amount of replicas
that a given shard will have. If possible, Redis will ensure that all replicas of a given shard will be on different

nodes.

In order to run a COMPSs + Redis application on a queue system the user must add the following flags to the
enqueue_compss command:

1. --storage-home=${path_to_the_bundle_folder} This must point to the root of the COMPSs-Redis bun-
dle.

2 https://en.wikipedia.org/wiki/List _of TCP and UDP_port numbers

7.4. COMPSs + Redis 215

https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers

COMPSs Documentation, 2.9

2. --storage-props=${path_to_the_storage_props_file} This must point to the storage_props.cfg men-
tioned above.

3. --classpath=${path_to_COMPSs-redisPSCO.jar} As in the previous section, the JAR with the storage
API must be specified.

4. If you are running a Python application, also add the --pythonpath=${app_path}:${path_to_the_-
bundle_folder} flag

Caution: As a requirement, the supercomputer MUST NOT kill daemonized processes running on the
provided computing nodes during the execution.

7.5 Implement your own Storage interface for COMPSs

In order to implement an interface for a Storage framework, it is necessary to implement the Java SRI (mandatory),
and depending on the desired language, implement the Python SRI and the specific SOI inheriting from the generic
SOI provided by COMPSs.

7.5.1 Generic Storage Object Interface

Table 23 shows the functions that must exist in the storage object interface, that enables the object that inherits
it to interact with the storage framework.

Table 23: SCO object definition
Name Returns Comments
Constructor Nothing

Instantiates the object.

get by alias(String id) Object

Retrieve the object with alias
“name”.

makePersistent (String id) Nothing

Inserts the object in the storage
framework with the id.

If id is null, a random UUID will
be computed instead.

deletePersistent|() Nothing

Removes the object from the
storage.

It does nothing if it was not
already there.

getID() String

Returns the current object
identifier if the object is not
persistent (null instead).

For example, the makePersistent function is intended to store the object content into the persistent storage,
deletePersistent to remove it, and getID to provide the object identifier.

216 Chapter 7. Persistent Storage

COMPSs Documentation, 2.9

Important: An object will be considered persisted if the getID function retrieves something different from None.

This interface must be implemented in the target language desired (e.g. Java or Python).

7.5.2 Generic Storage Runtime Interfaces

Table 24 shows the functions that must exist in the storage runtime interface, that enables the COMPSs runtime
to interact with the storage framework.

7.5. Implement your own Storage interface for COMPSs 217

COMPSs Documentation, 2.9
Table 24: Java API
Name Returns Comments Signature
Nothing public static void
o) L init(String storageConf)
init(String storage_conf) Do.any initialization throws StorageException
action before 0
starting to execute the
application.
Receives the storage
configuration
file path defined in the
runcompss
Or enqueue_composs
command.
Nothing public static void finish()
finish() Do any finalization throws StorageException
action after
executing the
application.
List<String> public static
. L . . List<String> getLo-
getLocations(String id) Retrieve the 'locatlons cations(String id) throws
where a particular StorageException
object is from its
identifier.
Object public static Object get-
getByID(String id) Retrieve an object from]S?)tyol ggg}fclfptliil throws
its identifier.
String public static void
. L i newReplica(String id,
newReplica(String id, Create a new replica of String hostName) throws
String hostName) an object in the StorageException
storage framework.
String public static ~ String
. L) new Version(String id,
new Version(String id, Crea‘@ a n.ew version of String hostName) throws
String hostname) an object in the StorageException
storage framework.
Nothing public static void con-
)]) . . solidateVersion(String id-
consolidateVersion(String Consolidate a version of Final) throws StorageEx-
id) an object in the ception
storage framework.
String public static String
executeTask(String id, Execute the task into the g)éffr?geTjsgc(rSigiig, Olg_’
) datastore. ject]] values, String
hostName, CallbackHan-
dler callback) throws
StorageException
Object public static Object

238 Result(CallbackEvent
event())

Retrieve the result JEHapt

execution into

the storage framework.

e ge%l-{eﬁylt (s(“ aé atclgjtvent

event) throws torage x—
ceptlon

COMPSs Documentation, 2.9

This functions enable the COMPSs runtime to keep the data consistency through the distributed execution.

In addition, Table 25 shows the functions that must exist in the storage runtime interface, that enables the COMPSs
Python binding to interact with the storage framework. It is only necessary if the target language is Python.

7.5. Implement your own Storage interface for COMPSs 219

COMPSs Documentation, 2.9
Table 25: Python API
Name Returns Comments Signature
init(String storage conf) | Nothing
Do any initialization def initWorker(config -
action before starting to | file path=None,
execute the application. *kwargs)
Receives the storage # Does not return
configuration file path
defined in the runcompss
or
enqueue_composs
command.
finish() Nothing
Do any finalization def
action after executing finishWorker (**kwargs)
the application. # Does not return
getByID(String id) Object
Retrieve an object from | def getByID(id)
its identifier. # Returns the
object with Id ‘id’
TaskContext Context
Define a task context class
(task enter/exit actions). | TaskContext(object):
def init (self,
logger, values,
config_file -
path=None,
**kwargs):
self.logger =
logger
self.values =
values
self.config -
file path =
config_file -
path
def
__enter__ (self):
Do
something for
task prolog
def exit_ (self,
type, value,
traceback):
+# Do
something for
task epilog
220 Chapter 7. Persistent Storage

COMPSs Documentation, 2.9

7.5.3 Storage Interface usage

7.5.3.1 Using runcompss

The first consideration is to deploy the storage framework, and then follow the next steps:

1. Create a storage_conf.cfg file with the configuation required by the init SRIs functions.

2. Add the flag --classpath=${path_to_SRI.jar} to the runcompss command.

3. Add the flag --storage_conf="path to storage_conf.cfg file to the runcompss command.

4. If you are running a Python app, also add the --pythonpath=${app_pathl}:${path_to_the_bundle_-
folder}/python flag to the runcompss command.

As usual, the project.xml and resources.xml files must be correctly set. It must be noted that there can be
nodes that are not COMPSs nodes (although this is a highly unrecommended practice since they will always
need data that must be transferred from another node). Also, any locality policy will likely cause this node to
have a very low workload.

7.5.3.2 Using enqueue_compss

In order to run a COMPSs + your storage on a queue system the user must add the following flags to the
enqueue_compss command:

1. --storage-home=${path_to_the_user_storage_folder} This must point to the root of the user storage
folder, where the scripts for starting (storage_init.sh) and stopping (storage_stop.sh) the storage frame-
work must exist.

e storage_init.sh is called before the application execution and it is intended to deploy the
storage framework within the nodes provided by the queuing system. The parameters that re-
ceives are (in order):

JOBID The job identifier provided by the queuing system.

MASTER_NODE The name of the master node considered by COMPSs.

STORAGE MASTER NODE The name of the node to be considere the master for the Stor-
age framework.

WORKER NODES The set of nodes provided by the queuing system that will be considered
as worker nodes by COMPSs.

NETWORK Network interface (e.g. ib0)

STORAGE_PROPS Storage properties file path (defined as enqueue_compss flag).

VARIABLES TO BE SOURCED If environment variables for the Storage framework need
to be defined COMPSs provides an empty file to be filled by the storage_init.sh script, that
will be sourced afterwards. This file is cleaned inmediately after sourcing it.

e storage_stop.sh is called after the application execution and it is intended to stop the storage
framework within the nodes provided by the queuing system. The parameters that receives are (in
order):

JOBID The job identifier provided by the queuing system.

MASTER_NODE The name of the master node considered by COMPSs.

STORAGE_ MASTER_NODE The name of the node to be considere the master for the Stor-
age framework.

WORKER _NODES The set of nodes provided by the queuing system that will be considered
as worker nodes by COMPSs.

NETWORK Network interface (e.g. ib0)

STORAGE_ PROPS Storage properties file path (defined as enqueue_compss flag).

2. --storage-props=${path_to_the_storage_props_file} This must point to the storage_props.cfg spe-

cific for the storage framework that will be used by the start and stop scripts provided in the --storage-home

path.

--classpath=${path_to_SRI. jar} As in the previous section, the JAR with the Java SRI must be specified.

4. If you are running a Python application, also add the --pythonpath=${app_path}:${path_to_the_user_-
storage_folder} flag, where the SOI for Python must exist.

@

7.5. Implement your own Storage interface for COMPSs 221

COMPSs Documentation, 2.9

222 Chapter 7. Persistent Storage

Chapter 8

Sample Applications

This section is intended to walk you through some COMPSs applications.

8.1 Java Sample applications

The first two examples in this section are simple applications developed in COMPSs to easily illustrate how to
code, compile and run COMPSs applications. These applications are executed locally and show different ways to
take advantage of all the COMPSs features.

The rest of the examples are more elaborated and consider the execution in a cloud platform where the VMs mount
a common storage on /sharedDisk directory. This is useful in the case of applications that require working with
big files, allowing to transfer data only once, at the beginning of the execution, and to enable the application to
access the data directly during the rest of the execution.

The Virtual Machine available at our webpage (http://compss.bsc.es/) provides a development environment with
all the applications listed in the following sections. The codes of all the applications can be found under the
/home/compss/tutorial _apps/java/ folder.

8.1.1 Hello World

The Hello Wolrd is a Java application that creates a task and prints a Hello World! message. Its purpose is to
clarify that the COMPSs tasks output is redirected to the job files and it is not available at the standard output.

Next we provide the important parts of the application’s code.

// hello.Hello

public static void main(String[] args) throws Exception {
// Check and get parameters
if (args.length !'= 0) {
usage () ;
throw new Exception("[ERROR] Incorrect number of parameters");

}

// Hello World from main application
System.out.println("Hello World! (from main application)");

// Hello World from a task
HelloImpl.sayHello();

As shown in the main code, this application has no input arguments.

223

http://compss.bsc.es/

COMPSs Documentation, 2.9

// hello.HelloImpl

public static void sayHello() {

System.out.println("Hello World! (from a task)");
}

Remember that, to run with COMPSs, java applications must provide an interface. For simplicity, in this example,
the content of the interface only declares the task which has no parameters:

// hello.HelloItf

@Method(declaringClass = "hello.HelloImpl")
void sayHello(
)

Notice that there is a first Hello World message printed from the main code and, a second one, printed inside a
task. When executing sequentially this application users will be able to see both messages at the standard output.
However, when executing this application with COMPSs, users will only see the message from the main code at
the standard output. The message printed from the task will be stored inside the job log files.

Let’s try it. First we proceed to compile the code by running the following instructions:

compss@bsc:~$ cd ~/tutorial_apps/java/hello/src/main/java/hello/
compss@bsc:~/tutorial_apps/java/hello/src/main/java/hello$ javac *.java
compss@bsc:~/tutorial_apps/java/hello/src/main/java/hello$ cd ..
compss@bsc:~/tutorial_apps/java/hello/src/main/java$ jar cf hello.jar hello
compss@bsc:~/tutorial_apps/java/hello/src/main/java$ mv hello.jar ~/tutorial_apps/java/hello/
—jar/

Alternatively, this example application is prepared to be compiled with maven:

compss@bsc:~$ cd “/tutorial_apps/java/hello/
compss@bsc:~/tutorial_apps/java/hello$ mvn clean package

Once done, we can sequentially execute the application by directly invoking the jar file.

compss@bsc:~$ cd “/tutorial_apps/java/hello/jar/
compss@bsc:~/tutorial_apps/java/hello/jar$ java -cp hello.jar hello.Hello
Hello World! (from main application)

Hello World! (from a task)

And we can also execute the application with COMPSs:

compss@bsc:~$ cd ~/tutorial_apps/java/hello/jar/
compss@bsc:~/tutorial_apps/java/hello/jar$ runcompss -d hello.Hello

[INFO] Using default execution type: compss

[INFO] Using default location for project file: /opt/COMPSs/Runtime/configuration/xml/
—projects/default_project.xml

[INFO] Using default location for resources file: /opt/COMPSs/Runtime/configuration/xml/
—resources/default_resources.xml

WARNING: COMPSs Properties file is null. Setting default values

[(928) API] - Deploying COMPSs Runtime v<version>
[(931) API] - Starting COMPSs Runtime v<version>
[(931) API] - 1Initializing components
[(1472) API] - Ready to process tasks

(continues on next page)

224 Chapter 8. Sample Applications

COMPSs Documentation, 2.9

(continued from previous page)

Hello World! (from main application)

[(1474) API] - Creating task from method sayHello in hello.HelloImpl
[(1474) API] - There is O parameter

[(1477) API] - No more tasks for app 1

[(4029) API] - Getting Result Files 1

[(4030) API] - Stop IT reached

[(4030) API] - Stopping AP...

[(4031) API] - Stopping TD...

[(4161) API] - Stopping Comm...

[(4163) API] - Runtime stopped

[(4166) API] - Execution Finished

Notice that the COMPSs execution is using the -d option to allow the job logging. Thus, we can check out the
application jobs folder to look for the task output.

compss@bsc:~$ cd ~/.COMPSs/hello.Hello_01/jobs/
compss@bsc:~/.COMPSs/hello.Hello_01/jobs$ 1s -1
jobl_NEW.err
jobl_NEW.out
compss@bsc:~/.COMPSs/hello.Hello_01/jobs$ cat jobl_NEW.out
[JAVA EXECUTOR] executeTask - Begin task execution
WORKER - Parameters of execution:
* Method type: METHOD
* Method definition: [DECLARING CLASS=hello.HelloImpl, METHOD NAME=sayHello]
* Parameter types:
* Parameter values:
Hello World! (from a task)
[JAVA EXECUTOR] executeTask - End task execution

8.1.2 Simple

The Simple application is a Java application that increases a counter by means of a task. The counter is stored
inside a file that is transferred to the worker when the task is executed. Thus, the tasks inferface is defined as
follows:

// simple.Simpleltf

@Method(declaringClass = "simple.SimpleImpl")
void increment(

OParameter(type = Type.FILE, direction = Direction.INOUT) String file
)3

Next we also provide the invocation of the task from the main code and the increment’s method code.

// simple.Simple

public static void main(String[] args) throws Exception {
// Check and get parameters
if (args.length != 1) {
usage () ;
throw new Exception("[ERROR] Incorrect number of parameters");
}

int initialValue = Integer.parselnt(args[0]);

(continues on next page)

8.1. Java Sample applications 225

COMPSs Documentation, 2.9

(continued from previous page)

// Write value

FileOutputStream fos = new FileOutputStream(fileName) ;
fos.write(initialValue);

fos.close();

System.out.println("Initial counter value is " + initialValue);

//Ezecute tincrement
SimpleImpl.increment (fileName) ;

// Write new value

FileInputStream fis = new FileInputStream(fileName);

int finalValue = fis.read();

fis.close(Q);

System.out.println("Final counter value is " + finalValue);

// simple.StimpleImpl

public static void increment(String counterFile) throws FileNotFoundException, IOException {
// Read value
FileInputStream fis = new FileInputStream(counterFile);
int count = fis.read();
fis.close(Q);

// Write new value

FileOutputStream fos = new FileOutputStream(counterFile);
fos.write(++count);

fos.close();

Finally, to compile and execute this application users must run the following commands:

compss@bsc:~$ cd ~/tutorial_apps/java/simple/src/main/java/simple/
compss@bsc:~/tutorial_apps/java/simple/src/main/java/simple$ javac *.java
compss@bsc:~/tutorial_apps/java/simple/src/main/java/simple$ cd ..
compss@bsc:~/tutorial_apps/java/simple/src/main/java$ jar cf simple.jar simple
compss@bsc:~/tutorial_apps/java/simple/src/main/java$ mv simple.jar ~/tutorial_apps/java/
—simple/jar/

compss@bsc:~$ cd “/tutorial_apps/java/simple/jar
compss@bsc:~/tutorial_apps/java/simple/jar$ runcompss simple.Simple 1
compss@bsc:~/tutorial_apps/java/simple/jar$ runcompss simple.Simple 1

[INFO] Using default execution type: compss

[INFO] Using default location for project file: /opt/COMPSs/Runtime/configuration/xml/
qprojects/default_project.xml

[INFO] Using default location for resources file: /opt/COMPSs/Runtime/configuration/xml/
—resources/default_resources.xml

WARNING: COMPSs Properties file is null. Setting default values
[(772) API] - Starting COMPSs Runtime v<version>

Initial counter value is 1

Final counter value is 2

[(3813) API] - Execution Finished

(continues on next page)

226 Chapter 8. Sample Applications

COMPSs Documentation, 2.9

(continued from previous page)

8.1.3 Increment

The Increment application is a Java application that increases N times three different counters. Each increase
step is developed by a separated task. The purpose of this application is to show parallelism between the three
counters.

Next we provide the main code of this application. The code inside the increment task is the same than the
previous example.

// increment.Increment

public static void main(String[] args) throws Exception {
// Check and get parameters
if (args.length !'= 4) {
usage () ;
throw new Exception("[ERROR] Incorrect number of parameters");
}
int N = Integer.parselnt(args[0]);
int counterl = Integer.parselnt(args[1]);
int counter2 = Integer.parselnt(args([2]);
int counter3 = Integer.parselnt(args[3]);

// Initialize counter files
System.out.println("Initial counter values:");
initializeCounters(counterl, counter2, counter3);

// Print initial counters state
printCounterValues();

// Ezxecute increment tasks

for (int 1 = 0; i < N; ++1i) {
IncrementImpl.increment (fileNamel) ;
IncrementImpl.increment (fileName2) ;
IncrementImpl.increment (fileName3) ;

3

// Print final counters state (sync)
System.out.println("Final counter values:");
printCounterValues();

As shown in the main code, this application has 4 parameters that stand for:

1. N: Number of times to increase a counter
2. InitialValuel: Initial value for counter 1
3. InitialValue2: Initial value for counter 2
4. InitialValue3: Initial value for counter 3

Next we will compile and run the Increment application with the -g option to be able to generate the final graph
at the end of the execution.

compss@bsc:~$ cd ~/tutorial_apps/java/increment/src/main/java/increment/
compss@bsc:~/tutorial_apps/java/increment/src/main/java/increment$ javac *.java

(continues on next page)

8.1. Java Sample applications 227

COMPSs Documentation, 2.9

(continued from previous page)

compss@bsc:~/tutorial_apps/java/increment/src/main/java/increment$ cd ..
compss@bsc:~/tutorial_apps/java/increment/src/main/java$ jar cf increment.jar increment
compss@bsc:~/tutorial_apps/java/increment/src/main/java$ mv increment.jar ~/tutorial_apps/
—java/increment/jar/

compss@bsc:~$ cd ~/tutorial_apps/java/increment/jar
compss@bsc:~/tutorial_apps/java/increment/jar$ runcompss -g increment.Increment 10 1 2 3

[INFO] Using default execution type: compss

[INFO] Using default location for project file: /opt/COMPSs/Runtime/configuration/xml/
—projects/default_project.xml

[INFO] Using default location for resources file: /opt/COMPSs/Runtime/configuration/xml/
—resources/default_resources.xml

WARNING: COMPSs Properties file is null. Setting default values
[(1028) API] - Starting COMPSs Runtime v<version>
Initial counter values:

- Counterl value is 1

- Counter2 value is 2

- Counter3 value is 3

Final counter values:

- Counterl value is 11

- Counter2 value is 12

- Counter3 value is 13

[(4403) API] - Execution Finished

By running the compss_gengraph command users can obtain the task graph of the above execution. Next we
provide the set of commands to obtain the graph show in Figure 44.

compss@bsc:~$ cd ~/.COMPSs/increment.Increment_01/monitor/
compss@bsc:~/.COMPSs/increment . Increment_01/monitor$ compss_gengraph complete_graph.dot
compss@bsc:~/.COMPSs/increment . Increment_01/monitor$ evince complete_graph.pdf

8.1.4 Matrix multiplication

The Matrix Multiplication (Matmul) is a pure Java application that multiplies two matrices in a direct way. The
application creates 2 matrices of N x N size initialized with values, and multiply the matrices by blocks.

This application provides three different implementations that only differ on the way of storing the matrix:

matmul.objects.Matmul Matrix stored by means of objects
matmul.files.Matmul Matrix stored in files
matmul.arrays.Matmul Matrix represented by an array

In all the implementations the multiplication is implemented in the multiplyAccumulative method that is thus
selected as the task to be executed remotely. As example, we we provide next the task implementation and the
tasks interface for the objects implementation.

// matmul.objects.Block

public void multiplyAccumulative(Block a, Block b) {
for (int 1 = 0; i < M; i++) {
for (int j = 0; j < M; j++) {

(continues on next page)

228 Chapter 8. Sample Applications

COMPSs Documentation, 2.9

Figure 44: Java increment tasks graph

5‘1 | b,
I _.z'-"-. _"__
] : “1p| 218
| ik
-7'2_;;. 21}
o a, *h
[E?HH m 1

Figure 45: Matrix multiplication

8.1.

Java Sample applications

229

COMPSs Documentation, 2.9

(continued from previous page)

for (int k = 0; k < M; k++) {
datali] [j] += a.datali] [k]*b.datalk] [j];
}

// matmul.objects.MatmullItf

@Method(declaringClass = "matmul.objects.Block")
void multiplyAccumulative(

@Parameter Block a,

OParameter Block b

)

In order to run the application the matrix dimension (number of blocks) and the dimension of each block have to
be supplied. Consequently, any of the implementations must be executed by running the following command.

compss@bsc:~$ runcompss matmul.<IMPLEMENTATION_TYPE>.Matmul <matrix_dim> <block_dim>

Finally, we provide an example of execution for each implementation.

compss@bsc:~$ cd ~/tutorial_apps/java/matmul/jar/
compss@bsc:~/tutorial_apps/java/matmul/jar$ runcompss matmul.objects.Matmul 8 4

[INFO] Using default execution type: compss

[INFO] Using default location for project file: /opt/COMPSs/Runtime/configuration/xml/
—projects/default_project.xml

[INFO] Using default location for resources file: /opt/COMPSs/Runtime/configuration/xml/
—resources/default_resources.xml

WARNING: COMPSs Properties file is null. Setting default values
[(887) API] - Starting COMPSs Runtime v<version>

[LOG] MSIZE parameter value = 8

[LOG] BSIZE parameter value = 4

[LOG] Allocating A/B/C matrix space

[LOG] Computing Result

[LOG] Main program finished.

[(7415) API] - Execution Finished

compss@bsc:~$ cd ~/tutorial_apps/java/matmul/jar/
compss@bsc:~/tutorial_apps/java/matmul/jar$ runcompss matmul.files.Matmul 8 4

[INFO] Using default execution type: compss

[INFO] Using default location for project file: /opt/COMPSs/Runtime/configuration/xml/
—projects/default_project.xml

[INFO] Using default location for resources file: /opt/COMPSs/Runtime/configuration/xml/
—resources/default_resources.xml

WARNING: COMPSs Properties file is null. Setting default values
[(907) API] - Starting COMPSs Runtime v<version>
[LOG] MSIZE parameter value = 8

(continues on next page)

230 Chapter 8. Sample Applications

COMPSs Documentation, 2.9

(continued from previous page)

[LOG] BSIZE parameter value = 4

[LOG] Computing result

[LOG] Main program finished.

[(9925) API] - Execution Finished

compss@bsc:~$ cd ~/tutorial_apps/java/matmul/jar/
compss@bsc:~/tutorial_apps/java/matmul/jar$ runcompss matmul.arrays.Matmul 8 4

[INFO] Using default execution type: compss

[INFO] Using default location for project file: /opt/COMPSs/Runtime/configuration/xml/
—projects/default_project.xml

[INFO] Using default location for resources file: /opt/COMPSs/Runtime/configuration/xml/
—resources/default_resources.xml

WARNING: COMPSs Properties file is null. Setting default values
[(1062) API] - Starting COMPSs Runtime v<version>

[LOG] MSIZE parameter value = 8

[LOG] BSIZE parameter value = 4

[LOG] Allocating C matrix space

[LOG] Computing Result

[LOG] Main program finished.

[(7811) API] - Execution Finished

8.1.5 Sparse LU decomposition

SparseLU multiplies two matrices using the factorization method of LU decomposition, which factorizes a matrix
as a product of a lower triangular matrix and an upper one.

11 12 dy3 li7 0 0 Uy Uz Uya
a1 G Goa| = [log ln 0 0 usp s
flz1 dzz dag l31 l32 a3 0 0 ugs

Figure 46: Sparse LU decomposition

The matrix is divided into N x N blocks on where 4 types of operations will be applied modifying the blocks: 1u0,
fwd, bdiv and bmod. These four operations are implemented in four methods that are selecetd as the tasks that
will be executed remotely. In order to run the application the matrix dimension has to be provided.

As the previous application, the sparseLU is provided in three different implementations that only differ on the
way of storing the matrix:

1. sparseLU.objects.SparseLU Matrix stored by means of objects
2. sparseLU.files.SparseLLU Matrix stored in files
3. sparseLU.arrays.SparseLU Matrix represented by an array

Thus, the commands needed to execute the application is with each implementation are:

compss@bsc:~$ cd tutorial_apps/java/sparselLU/jar/
compss@bsc:~/tutorial_apps/java/sparselLU/jar$ runcompss sparselLU.objects.SparselLU 16 8
[INFO] Using default execution type: compss

(continues on next page)

8.1. Java Sample applications 231

COMPSs Documentation, 2.9

(continued from previous page)

[INFO] Using default location for project file: /opt/COMPSs/Runtime/configuration/xml/
oprojects/default_project.xml

[INFO] Using default location for resources file: /opt/COMPSs/Runtime/configuration/xml/
—resources/default_resources.xml

WARNING: COMPSs Properties file is null. Setting default values
[(1221) API] - Starting COMPSs Runtime v<version>

[LOG] Running with the following parameters:

[LOG] - Matrix Size: 16

[LOG] - Block Size: 8

[LOG] Initializing Matrix

[LOG] Computing SparseLU algorithm on A

[LOG] Main program finished.

[(13642) API] - Execution Finished

compss@bsc:~$ cd tutorial_apps/java/sparselLU/jar/
compss@bsc:~/tutorial_apps/java/sparselU/jar$ runcompss sparselLU.files.SparselLU 4 8

[INFO] Using default execution type: compss

[INFO] Using default location for project file: /opt/COMPSs/Runtime/configuration/xml/
—projects/default_project.xml

[INFO] Using default location for resources file: /opt/COMPSs/Runtime/configuration/xml/
—resources/default_resources.xml

WARNING: COMPSs Properties file is null. Setting default values
[(1082) API] - Starting COMPSs Runtime v<version>

[LOG] Running with the following parameters:

[LOG] - Matrix Size: 16

[LOG] - Block Size: 8

[LOG] Initializing Matrix

[LOG] Computing SparseLU algorithm on A

[LOG] Main program finished.

[(13605) API] - Execution Finished

compss@bsc:~$ cd tutorial_apps/java/sparselLU/jar/
compss@bsc:~/tutorial_apps/java/sparselLU/jar$ runcompss sparselU.arrays.SparselU 8 8

[INFO] Using default execution type: compss

[INFO] Using default location for project file: /opt/COMPSs/Runtime/configuration/xml/
—projects/default_project.xml

[INFO] Using default location for resources file: /opt/COMPSs/Runtime/configuration/xml/
—resources/default_resources.xml

WARNING: COMPSs Properties file is null. Setting default values
[(1082) API] - Starting COMPSs Runtime v<version>

[LOG] Running with the following parameters:

[LOG] - Matrix Size: 16

(continues on next page)

232 Chapter 8. Sample Applications

COMPSs Documentation, 2.9

(continued from previous page)

[LOG] - Block Size: 8

[LOG] Initializing Matrix

[LOG] Computing SparseLU algorithm on A
[LOG] Main program finished.

[(13605) API] - Execution Finished

8.1.6 BLAST Workflow

BLAST is a widely-used bioinformatics tool for comparing primary biological sequence information, such as the
amino-acid sequences of different proteins or the nucleotides of DNA sequences with sequence databases, identifying
sequences that resemble the query sequence above a certain threshold. The work performed by the COMPSs Blast
workflow is computationally intensive and embarrassingly parallel.

Sequence file

>seql Split task splits sequence file in >seq3
AACCGGTT N fragments of complete GGTTAACC
>seq2 sequences. >seqd
CCAATTGG TTAACCGG

BLAST
Alignment

BLAST
Alignment

Shared
Database

BLAST output written to
local intermediate file.

Figure 47: The COMPSs Blast workflow

The workflow describes the three blocks of the workflow implemented in the Split, Align and Assembly methods.
The second one is the only method that is chosen to be executed remotely, so it is the unique method defined in
the interface file. The Split method chops the query sequences file in N fragments, Align compares each sequence
fragment against the database by means of the Blast binary, and Assembly combines all intermediate files into a
single result file.

This application uses a database that will be on the shared disk space avoiding transferring the entire database
(which can be large) between the virtual machines.

compss@bsc:~$ cp ~/workspace/blast/package/Blast.tar.gz /home/compss/
compss@bsc:~$ tar xzf Blast.tar.gz

The command line to execute the workflow:

compss@bsc:~$ runcompss blast.Blast <debug> \
<bin_location> \
<database_file> \
<sequences_file> \
<frag_number> \
<tmpdir> \
<output_file>

8.1. Java Sample applications 233

COMPSs Documentation, 2.9

Where:

debug: The debug flag of the application (true or false).

bin_location: Path of the Blast binary.

database file: Path of database file; the shared disk /sharedDisk/ is suggested to avoid big data transfers.
sequences _file: Path of sequences file.

frag number: Number of fragments of the original sequence file, this number determines the number of
parallel Align tasks.

tmpdir: Temporary directory (/home/compss/tmp/).

e output file: Path of the result file.

Example:

compss@bsc:~$ runcompss blast.Blast true \
/home/compss/tutorial_apps/java/blast/binary/blastall \
/sharedDisk/Blast/databases/swissprot/swissprot \
/sharedDisk/Blast/sequences/sargasso_test.fasta \
4\
/tmp/ \
/home/compss/out.txt

8.2 Python Sample applications

The first two examples in this section are simple applications developed in COMPSs to easily illustrate how to
code, compile and run COMPSs applications. These applications are executed locally and show different ways to
take advantage of all the COMPSs features.

The rest of the examples are more elaborated and consider the execution in a cloud platform where the VMs mount
a common storage on /sharedDisk directory. This is useful in the case of applications that require working with
big files, allowing to transfer data only once, at the beginning of the execution, and to enable the application to
access the data directly during the rest of the execution.

The Virtual Machine available at our webpage (http://compss.bsc.es/) provides a development environment with
all the applications listed in the following sections. The codes of all the applications can be found under the
/home/compss/tutorial _apps/python/ folder.

8.2.1 Simple

The Simple application is a Python application that increases a counter by means of a task. The counter is stored
inside a file that is transfered to the worker when the task is executed. Next, we provide the main code and the
task declaration:

from pycompss.api.task import task
from pycompss.api.parameter import FILE_INOUT

Qtask(filePath = FILE_INOUT)
def increment(filePath):
Read wvalue
fis = open(filePath, 'r')
value = fis.read()
fis.close()

Write value

fos = open(filePath, 'w')
fos.write(str(int(value) + 1))
fos.close()

(continues on next page)

234 Chapter 8. Sample Applications

http://compss.bsc.es/

COMPSs Documentation, 2.9

(continued from previous page)

def main_program():
from pycompss.api.api import compss_open

Check and get parameters

if len(sys.argv) != 2:
exit(-1)

initialValue = sys.argv[1]

fileName="counter"

Write value

fos = open(fileName, 'w')
fos.write(initialValue)

fos.close()

print "Initial counter value is " + initialValue

Execute imcrement
increment (fileName)

Write new value

fis = compss_open(fileName, 'r+')

finalValue = fis.read()

fis.close()

print "Final counter value is " + finalValue

if __name__=='__main__"':

main_program()

The simple application can be executed by invoking the runcompss command with the application file name and
the initial counter value.

The following lines provide an example of its execution.

compss@bsc:~$ cd ~/tutorial_apps/python/simple/

compss@bsc:~/tutorial_apps/python/simple$ runcompss ~/tutorial_apps/python/simple/simple.py 1
[INFO] Using default execution type: compss

[INFO] Using default location for project file: /opt/COMPSs/Runtime/configuration/xml/
wprojects/default_project.xml

[INFO] Using default location for resources file: /opt/COMPSs/Runtime/configuration/xml/
—resources/default_resources.xml

WARNING: COMPSs Properties file is null. Setting default values
[(639) API] - Starting COMPSs Runtime v<version>

Initial counter value is 1

Final counter value is 2

[(6230) API] - Execution Finished

8.2. Python Sample applications 235

COMPSs Documentation, 2.9

8.2.2 Increment

The Increment application is a Python application that increases N times three different counters. Each increase
step is developed by a separated task. The purpose of this application is to show parallelism between the three
counters.

Next we provide the main code of this application. The code inside the increment task is the same than the
previous example.

from pycompss.api.task import task
from pycompss.api.parameter import FILE_INOUT

Otask(filePath = FILE_INOUT)
def increment(filePath):
Read wvalue
fis = open(filePath, 'r')
value = fis.read()
fis.close()

Write wvalue

fos = open(filePath, 'w')
fos.write(str(int(value) + 1))
fos.close()

def main_program():
Check and get parameters
if len(sys.argv) != 5:
exit(-1)

N = int(sys.argv[1])
counterl = int(sys.argv[2])
counter2 = int(sys.argv[3])
counter3 = int(sys.argv[4])

Initialize counter files
initializeCounters(counterl, counter2, counter3)
print "Initial counter values:"
printCounterValues ()

Exzecute increment

for i in range(N):
increment (FILENAME1)
increment (FILENAME2)
increment (FILENAME3)

Write final counters state (sync)
print "Final counter values:"
printCounterValues ()
if __name__=='__main__"':
main_program()

As shown in the main code, this application has 4 parameters that stand for:

N Number of times to increase a counter
counterl Initial value for counter 1
counter2 Initial value for counter 2
counter3 Initial value for counter 3

Next we run the Increment application with the -g option to be able to generate the final graph at the end of the
execution.

236 Chapter 8. Sample Applications

COMPSs Documentation, 2.9

compss@bsc:~/tutorial_apps/python/increment$ runcompss --lang=python -g ~/tutorial_apps/
—python/increment/increment.py 10 1 2 3

[INFO] Using default execution type: compss

[INFO] Using default location for project file: /opt/COMPSs/Runtime/configuration/xml/
—projects/default_project.xml

[INFO] Using default location for resources file: /opt/COMPSs/Runtime/configuration/xml/
—resources/default_resources.xml

WARNING: COMPSs Properties file is null. Setting default values
[(670) API] - Starting COMPSs Runtime v<version>
Initial counter values:

- Counterl value is 1

- Counter2 value is 2

- Counter3 value is 3

Final counter values:

- Counterl value is 11

- Counter2 value is 12

- Counter3 value is 13

[(7390) API] - Execution Finished

By running the compss_gengraph command users can obtain the task graph of the above execution. Next we
provide the set of commands to obtain the graph show in Figure 48.

compss@bsc:~$ cd ~/.COMPSs/increment.py_01/monitor/
compss@bsc:~/.COMPSs/increment.py_01/monitor$ compss_gengraph complete_graph.dot
compss@bsc:~/.COMPSs/increment .py_01/monitor$ evince complete_graph.pdf

8.2.3 Kmeans

KMeans is machine-learning algorithm (NP-hard), popularly employed for cluster analysis in data mining, and
interesting for benchmarking and performance evaluation.

The objective of the Kmeans algorithm to group a set of multidimensional points into a predefined number of
clusters, in which each point belongs to the closest cluster (with the nearest mean distance), in an iterative
process.

import numpy as np
import time

from sklearn.metrics import pairwise_distances
from sklearn.metrics.pairwise import paired_distances

from pycompss.api.task import task
from pycompss.api.api import compss_wait_on
from pycompss.api.api import compss_barrier

O@task(returns=np.ndarray)
def partial_sum(fragment, centres):
partials = np.zeros((centres.shape[0], 2), dtype=object)
close_centres = pairwise_distances(fragment, centres).argmin(axis=1)
for center_idx, _ in enumerate(centres):
indices = np.argwhere(close_centres == center_idx).flatten()

(continues on next page)

8.2. Python Sample applications 237

COMPSs Documentation, 2.9

Figure 48: Python increment tasks graph

238 Chapter 8. Sample Applications

COMPSs Documentation,

2.9

(continued from previous page)

np.sum(fragment [indices], axis=0)
indices.shape[0]

partials([center_idx] [0]
partials[center_idx] [1]
return partials

O@task(returns=dict)
def merge(*data):
accum = datal0].copy()
for d in datal[1:]:
accum += d
return accum

def converged(old_centres, centres, epsilon, iteration, max_iter):
if old_centres is None:
return False
dist = np.sum(paired_distances(centres, old_centres))
return dist < epsilon ** 2 or iteration >= max_iter

def recompute_centres(partials, old_centres, arity):
centres = old_centres.copy()
while len(partials) > 1:
partials_subset = partials[:arity]
partials = partials[arity:]
partials.append(merge (*partials_subset))
partials = compss_wait_on(partials)
for idx, sum_ in enumerate(partials([0]):
if sum_[1] !'= O:
centres[idx] = sum_[0] / sum_[1]
return centres

def kmeans_frag(fragments, dimensions, num_centres=10, iterations=20,
seed=0., epsilon=le-9, arity=50):
mnmnn
4 fragment-based K-Means algorithm.
Given a set of fragments, the desired number of clusters and the
mazximum number of iterations, compute the optimal centres and the
tndex of the centre for each point.
:param fragments: Number of fragments
:param dimensions: Number of dimensions
:param num_centres: Number of centres
:param iterations: Maximum number of iterations
:param seed: Random seed
:param epsilon: Epstilon (convergence distance)
:param arity: Reduction arity
:return: Final centres
nimn
Set the random seed
np.random.seed(seed)
Centres is wusually a very small matriz, so it is affordable to have it in
the master.
centres = np.asarray(

[np.random.random(dimensions) for _ in range(num_centres)]

(continues on next page)

8.2. Python Sample applications

239

COMPSs Documentation, 2.9

(continued from previous page)

def

Note: this implementation treats the centres as files, never as PSCUOs.
old_centres = None
iteration = 0O
while not converged(old_centres, centres, epsilon, iteration, iterations):
print("Doing iteration #7d/%d" 7% (iteration + 1, iterations))
old_centres = centres.copy()
partials = []
for frag in fragments:
partial = partial_sum(frag, old_centres)
partials.append(partial)
centres = recompute_centres(partials, old_centres, arity)
iteration += 1
return centres

parse_arguments() :

nimnn

Parse command line arguments. Make the program generate

a help message in case of wrong usage.

:return: Parsed arguments

nnn

import argparse

parser = argparse.ArgumentParser(description='KMeans Clustering.')

parser.add_argument('-s', '--seed', type=int, default=0,
help='Pseudo-random seed. Default = 0')
parser.add_argument('-n', '--numpoints', type=int, default=100,
help='Number of points. Default = 100')
parser.add_argument('-d', '--dimensions', type=int, default=2,
help='Number of dimensions. Default = 2')
parser.add_argument('-c', '--num_centres', type=int, default=5,
help='Number of centres. Default = 2')
parser.add_argument('-f', '--fragments', type=int, default=10,

help='Number of fragments.' +
' Default = 10. Condition: fragments < points')

parser.add_argument('-m', '--mode', type=str, default='uniform',
choices=['uniform', 'normal'],
help='Distribution of points. Default = uniform')

parser.add_argument('-i', '--iterations', type=int, default=20,
help='Maximum number of iterations')

parser.add_argument('-e', '--epsilon', type=float, default=le-9,

help='Epsilon. Kmeans will stop when:' +
" lold - newl| < epsilon.')
parser.add_argument('-a', '--arity', type=int, default=50,
help='Arity of the reduction carried out during \
the computation of the new centroids')
return parser.parse_args()

Otask(returns=1)

def generate_fragment(points, dim, mode, seed):

mnimn

Generate a random fragment of the spectified number of points using the

specified mode and the specified seed. Note that the generation is

distributed (the master will never see the actual points).

:param points: Number of points

:param dim: Number of dimensions

(continues on next page)

240 Chapter 8. Sample Applications

COMPSs Documentation, 2.9

(continued from previous page)

:param mode: Dataset generation mode

:param seed: Random seed

:return: Dataset fragment

Random generation distributions

rand = {
'normal': lambda k: np.random.normal(0, 1, k),
'uniform': lambda k: np.random.random(k),

}

r = rand[mode]

np.random.seed(seed)

mat = np.asarray(

[r(dim) for __ in range(points)]
)
Normalize all points between 0 and 1
mat -= np.min(mat)

mx = np.max(mat)
if mx > 0.0:
mat /= mx

return mat

def main(seed, numpoints, dimensions, num_centres, fragments, mode, iterations,
epsilon, arity):
mnmnn
This will be executed if called as main script. Look at the kmeans_frag
for the KMeans function.
This code is used for experimental purposes.
I.e it generates random data from some parameters that determine the size,
dimensionality and etc and returns the elapsed time.
:param seed: Random seed
:param numpoints: Number of points
:param dimensions: Number of dimenstions
:param num_centres: Number of centres
:param fragments: Number of fragments
:param mode: Dataset generation mode
:param iterations: Number of iterations
:param epsilon: Epsilon (convergence distance)
:param arity: Reduction arity
:return: None

nnn

start_time = time.time()

Generate the data

fragment_list = []

Prevent infinite loops

points_per_fragment = max(l, numpoints // fragments)

for 1 in range(0O, numpoints, points_per_fragment):
Note that the seed is different for each fragment.
This 1is done to avoid having repeated data.
r = min(numpoints, 1 + points_per_fragment)

fragment_list.append(
generate_fragment(r - 1, dimensions, mode, seed + 1)

(continues on next page)

8.2. Python Sample applications 241

COMPSs Documentation, 2.9

(continued from previous page)

compss_barrier()

print ("Generation/Load done")
initialization_time = time.time()
print("Starting kmeans")

Run kmeans

centres = kmeans_frag(fragments=fragment_list,
dimensions=dimensions,
num_centres=num_centres,
iterations=iterations,
seed=seed,
epsilon=epsilon,
arity=arity)

compss_barrier ()

print ("Ending kmeans")

kmeans_time = time.time()

Print (M- ")
print("--------om- RESULTS -——---————mmm——— ")
Print(M-—-- e ")

print("Initialization time: %f" 7 (initialization_time - start_time))
print ("Kmeans time: 7f" 7, (kmeans_time - initialization_time))
print("Total time: %f" % (kmeans_time - start_time))

centres = compss_wait_on(centres)

print ("CENTRES:")

print (centres)

Print (M-m e e e e "

if __name__ == "__main__":
options = parse_arguments()
main(**vars(options))

The kmeans application can be executed by invoking the runcompss command with the desired parameters (in
this case we use -g to generate the task depedency graph) and application. The following lines provide an example
of its execution considering 10M points, of 3 dimensions, divided into 8 fragments, looking for 8 clusters and a
maximum number of iterations set to 10.

compss@bsc:~$ runcompss -g kmeans.py -n 10240000 -f 8 -d 3 -c¢ 8 -i 10

[INFO] Inferred PYTHON language

[INFO] Using default location for project file: /opt/COMPSs//Runtime/configuration/xml/
—projects/default_project.xml

[INFO] Using default location for resources file: /opt/COMPSs//Runtime/configuration/xml/
—resources/default_resources.xml

[INFO] Using default execution type: compss

WARNING: COMPSs Properties file is null. Setting default values
[(436) API] - Starting COMPSs Runtime v2.7 (build 20200519-1005.
—1r6093e5ac94d67250e097a6fad9d3ec00d676feb¢)

Generation/Load done

(continues on next page)

242 Chapter 8. Sample Applications

COMPSs Documentation, 2.9

(continued from previous page)

Starting kmeans
Doing iteration #1/5
Doing iteration #2/5
Doing iteration #3/5
Doing iteration #4/5
Doing iteration #5/5
Ending kmeans

Initialization time: 8.625658
Kmeans time: 6.110023
Total time: 14.735682

CENTRES:

[[0.72244748 0.73760837 0.47839032]
[0.555741 0.20736841 0.21758715]
[0.25766653 0.73309038 0.77668994]
[0.20623714 0.67588471 0.25750168]
[0.73305652 0.7013741 0.15204797]
[0.22431367 0.22614948 0.66875431]
[0.76540302 0.75721277 0.83083206]
[0.75688812 0.24817146 0.72752128]]

[(16137) APT] - Execution Finished

Figure 49 depicts the generated task dependency graph. The dataset generation can be identified in the 8 blue
tasks, while the five iterations appear next. Between the iteration there is a synchronization which corresponds to
the convergence/max iterations check.

8.2.4 Kmeans with Persistent Storage

KMeans is machine-learning algorithm (NP-hard), popularly employed for cluster analysis in data mining, and
interesting for benchmarking and performance evaluation.

The objective of the Kmeans algorithm to group a set of multidimensional points into a predefined number of
clusters, in which each point belongs to the closest cluster (with the nearest mean distance), in an iterative
process.

In this application we make use of the persistent storage API. In particular, the dataset fragments are considered
StorageObject, delegating its content into the persistent framework. Since the data model (object declared as
storage object) includes functions, it can run efficiently with dataClay.

First, lets see the data model (storage_model/fragment.py)

from storage.api import StorageObject

try:
from pycompss.api.task import task
from pycompss.api.parameter import IN
except ImportError:
Required since the pycompss module ts not ready during the registiry
from dataclay.contrib.dummy_pycompss import task, IN

from dataclay import dclayMethod

(continues on next page)

8.2. Python Sample applications 243

COMPSs Documentation, 2.9

—

Figure 49: Python kmeans tasks graph

(continued from previous page)

import numpy as np
from sklearn.metrics import pairwise_distances

class Fragment(StorageObject):

nnn

@ClassField points numpy.ndarray

@dclayImport numpy as np
@dclayImportFrom sklearn.metrics import pairwise_distances
@dclayMethod ()
def __init__(self):
super (Fragment, self).__init__Q)
self.points = None

@dclayMethod (num_points='int', dim='int', mode='str', seed='int')
def generate_points(self, num_points, dim, mode, seed) :
mnmmn
Generate a random fragment of the spectfied number of points using the
spectfied mode and the specified seed. Note that the generation is
distributed (the master will never see the actual points).
:param num_points: Number of points
:param dim: Number of dimensions
:param mode: Dataset generation mode

(continues on next page)

244 Chapter 8. Sample Applications

COMPSs Documentation, 2.9

(continued from previous page)

:param seed: Random seed

:return: Dataset fragment

mmnn

Random generation distributions

rand = {
'normal': lambda k: np.random.normal(0, 1, k),
'uniform': lambda k: np.random.random(k),

}

r = rand[mode]

np.random. seed(seed)

mat = np.asarray(
[r(dim) for in range(num_points)]

)
Normalize all points between 0 and 1
mat -= np.min(mat)

mx = np.max(mat)
if mx > 0.0:
mat /= mx

self.points = mat

Otask(returns=np.ndarray, target_direction=IN)
@dclayMethod(centres='numpy.ndarray', return_='anything')
def partial_sum(self, centres):
partials = np.zeros((centres.shapel[0], 2), dtype=object)
arr = self.points
close_centres = pairwise_distances(arr, centres).argmin(axis=1)
for center_idx, _ in enumerate(centres):
indices = np.argwhere(close_centres == center_idx).flatten()
partials[center_idx] [0] = np.sum(arr[indices], axis=0)
partials[center_idx] [1] = indices.shape[0]
return partials

Now we can focus in the main kmeans application (kmeans.py):

import time
import numpy as np

from pycompss.api.task import task
from pycompss.api.api import compss_wait_on
from pycompss.api.api import compss_barrier

from storage_model.fragment import Fragment

from sklearn.metrics.pairwise import paired_distances

O@task(returns=dict)
def merge(*data):
accum = datal0].copy()
for d in datal1l:]:
accum += d
return accum

def converged(old_centres, centres, epsilon, iteration, max_iter):

(continues on next page)

8.2. Python Sample applications

245

COMPSs Documentation, 2.9

(continued from previous page)

def

def

if old_centres is None:

return False
dist = np.sum(paired_distances(centres, old_centres))
return dist < epsilon ** 2 or iteration >= max_iter

recompute_centres(partials, old_centres, arity):
centres = old_centres.copy()
while len(partials) > 1:
partials_subset = partials[:arity]
partials = partials[arity:]
partials.append(merge (*partials_subset))
partials = compss_wait_on(partials)
for idx, sum_ in enumerate(partials([0]):
if sum_[1] !'= O:
centres[idx] = sum_[0] / sum_[1]
return centres

kmeans_frag(fragments, dimensions, num_centres=10, iterations=20,
seed=0., epsilon=1e-9, arity=50):
nimn
4 fragment-based K-Means algorithm.
Given a set of fragments (which can be etther PSCOs or future objects that
point to PSCOs), the desired number of clusters and the maximum number of
tterations, compute the optimal centres and the index of the centre
for each point.
PSCO.mat must be a NzD float np.ndarray, where D = dimensions
:param fragments: Number of fragments
:param dimensions: Number of dimenstions
:param num_centres: Number of centres
:param iterations: Maximum number of iterations
:param seed: Random seed
:param epsilon: Epstilon (convergence distance)
:param arity: Arity
:return: Final centres and labels
nmnn
Set the random seed
np.random.seed(seed)
Centres ts usually a very small matriz, so i1t ts affordable to have it in
the master.
centres = np.asarray(
[np.random.random(dimensions) for _ in range(num_centres)]
)
Note: this implementation treats the centres as files, never as PSCUOs.
old_centres = None
iteration = 0O
while not converged(old_centres, centres, epsilon, iteration, iterations):
print ("Doing iteration #J,d/%d" % (iteration + 1, iterations))
0old_centres = centres.copy()
partials = []
for frag in fragments:
partial = frag.partial_sum(old_centres)
partials.append(partial)
centres = recompute_centres(partials, old_centres, arity)
iteration += 1

(continues on next page)

246

Chapter 8. Sample Applications

COMPSs Documentation,

2.9

(continued from previous page)

return centres

def parse_arguments():
nmnn
Parse command line arguments. Make the program generate
a help message in case of wrong usage.
:return: Parsed arguments
mnmnn
import argparse
parser = argparse.ArgumentParser(description='KMeans Clustering.')

parser.add_argument('-s', '--seed', type=int, default=0,
help='Pseudo-random seed. Default = 0')
parser.add_argument('-n', '--numpoints', type=int, default=100,
help='Number of points. Default = 100')
parser.add_argument('-d', '--dimensions', type=int, default=2,
help='Number of dimensions. Default = 2')
parser.add_argument('-c', '--num_centres', type=int, default=5,
help='Number of centres. Default = 2')
parser.add_argument('-f', '--fragments', type=int, default=10,

help='Number of fragments.' +
' Default = 10. Condition: fragments < points')

parser.add_argument('-m', '--mode', type=str, default='uniform',
choices=['uniform', 'normal'],
help='Distribution of points. Default = uniform')

parser.add_argument(’—i', '--iterations', type=int, default=20,
help='Maximum number of iterations')

parser.add_argument('-e', '--epsilon', type=float, default=1le-9,

help='Epsilon. Kmeans will stop when:' +
" lold - new| < epsilon.')
parser.add_argument(’—a', '--arity', type=int, default=50,
help='Arity of the reduction carried out during \
the computation of the new centroids')
return parser.parse_args()

from storage_model.fragment import Fragment # this will have to be removed

Otask(returns=Fragment)
def generate_fragment(points, dim, mode, seed):
nmnn
Generate a random fragment of the specified number of points using the
specified mode and the specified seed. Note that the generation ts
distributed (the master will never see the actual points).
:param points: Number of points
:param dim: Number of dimensions
:param mode: Dataset generation mode
:param seed: Random seed
:return: Dataset fragment
nimnn
fragment = Fragment()
Make persistent before since 1t ts populated in the task
fragment .make_persistent ()
fragment.generate_points(points, dim, mode, seed)

def main(seed, numpoints, dimensions, num_centres, fragments, mode, iterations,

(continues on next page)

8.2. Python Sample applications

247

COMPSs Documentation, 2.9

(continued from previous page)

epsilon, arity):
nimn
This will be executed if called as main script. Look at the kmeans_frag
for the KMeans function.
This code 1is used for experimental purposes.
I.e it generates random data from some parameters that determine the size,
dimensionality and etc and returns the elapsed time.
:param seed: Random seed
:param numpoints: Number of points
:param dimensions: Number of dimensions
:param num_centres: Number of centres
:param fragments: Number of fragments
:param mode: Dataset generation mode
:param iterations: Number of iterations
:param epsilon: Epsilon (convergence distance)
:param arity: Arity
:return: None

nnn

start_time = time.time()

Generate the data

fragment_list = []

Prevent infinite loops im case of mot-so-smart users
points_per_fragment = max(l, numpoints // fragments)

for 1 in range(O, numpoints, points_per_fragment):
Note that the seed is different for each fragment.
This 1s done to avoid having repeated data.
r = min(numpoints, 1 + points_per_fragment)

fragment_list.append(
generate_fragment(r - 1, dimensions, mode, seed + 1)

)

compss_barrier()

print ("Generation/Load done")
initialization_time = time.time()
print ("Starting kmeans")

Run kmeans

centres = kmeans_frag(fragments=fragment_list,
dimensions=dimensions,
num_centres=num_centres,
iterations=iterations,
seed=seed,
epsilon=epsilon,
arity=arity)

compss_barrier ()

print ("Ending kmeans")

kmeans_time = time.time()

print(M---mm e ")
print("---------mom-- RESULTS ------mmmmmmmoom - ")
Print (M—-m e ")

print("Initialization time: %f" 7 (initialization_time - start_time))
print ("Kmeans time: 7f" 7, (kmeans_time - initialization_time))

(continues on next page)

248

Chapter 8. Sample Applications

COMPSs Documentation, 2.9

(continued from previous page)

print("Total time: %f" 7 (kmeans_time

centres = compss_wait_on(centres)

print ("CENTRES:")
print (centres)

if __name__ == "__main__":

options = parse_arguments ()
main(**vars(options))

- start_time))

Tip: This code can work with Hecuba and Redis if the functions declared in the data model are declared outside
the data model, and the kmeans application uses the points attribute explicitly.

Since this code is going to be executed with dataClay, it is be necessary to declare the client.properties,
session.properties and storage_props.cfg files into the dataClay_confs with the following contents as ex-

ample (more configuration options can be found in the dataClay manual):

client.properties

HOST=127.0.0.1
TCPPORT=11034

session.properties

Account=bsc_user
Password=bsc_user
StubsClasspath=./stubs
DataSets=hpc_dataset
DataSetForStore=hpc_dataset

DataClayClientConfig=./client.properties

storage props.cfg

BACKENDS_PER_NODE=48

An example of the submission script that can be used in MareNostrum IV to launch this kmeans with PyCOMPSs

and dataClay is:

#!/bin/bash -e

module load gcc/8.1.0

export COMPSS_PYTHON_VERSION=3-ML
module load COMPSs/2.8

module load mkl/2018.1

module load impi/2018.1

module load opencv/4.1.2

module load DATACLAY/2.4.dev

Retrieve script arguments
job_dependency=${1:-None}
num_nodes=${2:-2}
execution_time=${3:-5}
tracing=%${4:-false}
exec_file=${5:-$(pwd) /kmeans.py}

(continues on next page)

8.2. Python Sample applications

249

COMPSs Documentation, 2.9

(continued from previous page)

Freeze storage_props into a temporal

(allow submission of multiple executions with varying parameters)
STORAGE_PROPS="mktemp -p ™~

cp $(pwd)/dataClay_confs/storage_props.cfg "${STORAGE_PROPS}"

if [[! ${tracing} == "false" 1]
then
extra_tracing_flags="\
--jvm_workers_opts=\"-javaagent:/apps/DATACLAY/dependencies/aspectjweaver.jar\" \
--jvm_master_opts=\"-javaagent:/apps/DATACLAY/dependencies/aspectjweaver.jar\" \
echo "Adding DATACLAYSRV_START_CMD to storage properties file"
echo "\${STORAGE_PROPS}=${STORAGE_PROPS}"
echo "" >> ${STORAGE_PROPS}
echo "DATACLAYSRV_START_CMD=\"--tracing\"" >> ${STORAGE_PROPS}
fi

Define script wvariables

SCRIPT_DIR="$(cd "$(dirname "${BASH_SOURCE[0]}")" && pwd)"
WORK_DIR=${SCRIPT_DIR}/

APP_CLASSPATH=${SCRIPT_DIR}/
APP_PYTHONPATH=${SCRIPT_DIR}/

Define application variables
graph=$tracing

log_level="off"
qos_flag="--qos=debug"
workers_flag=""
constraints="highmem"

CPUS_PER_NODE=48
WORKER_IN_MASTER=0

shift 5

Those are evaluated at submit time, mot at start time...
COMPSS_VERSION="module load whatis COMPSs 2>&1 >/dev/null | awk '{print $1 ; exitl}'"”
DATACLAY_VERSION="module load whatis DATACLAY 2>&1 >/dev/null | awk '{print $1 ; exit}'"

Enqueue job

enqueue_compss \
--job_name=kmeans00_PyCOMPSs_dataClay \
--job_dependency="${job_dependency}" \
--exec_time="${execution_time}" \
--num_nodes="${num_nodes}" \
\
--cpus_per_node="${CPUS_PER_NODE}" \
--worker_in_master_cpus="${WORKER_IN_MASTER}" \
--scheduler=es.bsc.compss.scheduler.loadbalancing.LoadBalancingScheduler \
\
"${workers_flag}" \
\
--worker_working_dir=/gpfs/scratch/user/ \
\
--constraints=${constraints} \
--tracing="${tracing}" \

(continues on next page)

250 Chapter 8. Sample Applications

COMPSs Documentation, 2.9

(continued from previous page)

--graph="${graph}" \

--summary \

--log_level="${log_levell}" \

"${qos_flag}" \

\

--classpath=${DATACLAY_JAR} \

--pythonpath=${APP_PYTHONPATH} : ${PYCLAY_PATH} : ${PYTHONPATH} \

--storage_props=${STORAGE_PROPS} \

--storage_home=$COMPSS_STORAGE_HOME \

--prolog="$DATACLAY_HOME/bin/dataclayprepare,$(pwd)/storage_model/,$(pwd)/,storage_model,
—python" \

\

${extra_tracing_flags} \

\

--lang=python \

\

"$exec_file" $@ --use_storage

8.2.5 Matmul

The matmul performs the matrix multiplication of two matrices.

import time
import numpy as np

from pycompss.api.task import task

from pycompss.api.parameter import INOUT
from pycompss.api.api import compss_barrier
from pycompss.api.api import compss_wait_on

Otask(returns=1)
def generate_block(size, num_blocks, seed=0, set_to_zero=False):
nimnn
Generate a square block of given size.
:param size: <Integer> Block size
:param num_blocks: <Integer> Number of blocks
:param seed: <Integer> Random seed
:param set_to_zero: <Boolean> Set block to zeros
:return: Block
mnmnn
np.random. seed(seed)
if not set_to_zero:
b = np.random.random((size, size))
Normalize matrixz to ensure more numerical precision
b /= np.sum(b) * float(num_blocks)
else:
b = np.zeros((size, size))
return b

Q@task (C=INQOUT)
def fused_multiply_add(A, B, C):

nnn

Multiplies two Blocks and accumulates the result in an INOUT Block (FMA).

(continues on next page)

8.2. Python Sample applications 251

COMPSs Documentation, 2.9

(continued from previous page)

:param A: Block 4
:param B: Block B
:param C: Result Block
:return: None

nnn

C += np.dot(A, B)

def dot(A, B, C):
4 COMPSs blocked matmul algorithm.
:param A: Block 4
:param B: Block B
:param C: Result Block
:return: None
n, m = len(A), len(B[0])
as many rows as A, as many columns as B
for i in range(n):
for j in range(m):
for k in range(n):
fused_multiply_add(A[i] [k], B[kI[jl, CLil[jD)

def main(num_blocks, elems_per_block, seed):
mnmnn
Matmul main.
:param num_blocks: <Integer> Number of blocks
:param elems_per_block: <Integer> Number of elements per block
:param seed: <Integer> Random seed
:return: None

nnn

start_time = time.time()

Generate the dataset in a distributed manner
1.e: avoid having the master a whole matriz
A, B, C=10, 00, 0
matrix_name = ["A", "B"]
for i in range(num_blocks):
for 1 in [A, B, C]:
1.append([])
Keep track of blockId to initialize with different random seeds
bid = 0
for j in range(num_blocks):
for ix, 1 in enumerate([A, B]):
1[-1].append(generate_block(elems_per_block,
num_blocks,
seed=seed + bid))
bid += 1
C[-1] .append(generate_block(elems_per_block,
num_blocks,
set_to_zero=True))
compss_barrier ()
initialization_time = time.time()

Do matriz multiplication

(continues on next page)

252 Chapter 8. Sample Applications

COMPSs Documentation, 2.9

(continued from previous page)

dot (A, B, C)

compss_barrier()
multiplication_time = time.time()

Print(M-—--m e ")
print ("-- oo om oo RESULTS - - c—cmommmmmmmeee "
Print (M -—--m e ")

print("Initialization time: %f" 7 (initialization_time -
start_time))

print ("Multiplication time: %f" 7 (multiplication_time -
initialization_time))

print ("Total time: %f" 7 (multiplication_time - start_time))

def parse_args():

nimn

Arguments parser.

Code for exzperimental purposes.

:return: Parsed arguments.

nimn

import argparse

description = 'COMPSs blocked matmul implementation'

parser = argparse.ArgumentParser(description=description)

parser.add_argument('-b', '--num_blocks', type=int, default=1,
help='Number of blocks (N in NxN)'
)

parser.add_argument('-e', '--elems_per_block', type=int, default=2,
help='Elements per block (N in NxN)'
)

parser.add_argument ('--seed', type=int, default=0,
help='Pseudo-Random seed'
)

return parser.parse_args()

if __name__ == "__main__":
opts = parse_args()

main(**vars(opts))

The matrix multiplication application can be executed by invoking the runcompss command with the desired
parameters (in this case we use -g to generate the task depedency graph) and application. The following lines
provide an example of its execution considering 4 x 4 Blocks of 1024 x 1024 elements each block, which conforms
matrices of 4096 x 4096 elements.

compss@bsc:~$ runcompss -g matmul.py -b 4 -e 1024

[INFO] Inferred PYTHON language

[INFO] Using default location for project file: /opt/COMPSs//Runtime/configuration/xml/
qprojects/default_project.xml

[INFO] Using default location for resources file: /opt/COMPSs//Runtime/configuration/xml/
—resources/default_resources.xml

[INFO] Using default execution type: compss

(continues on next page)

8.2. Python Sample applications 253

COMPSs Documentation, 2.9

(continued from previous page)

WARNING: COMPSs Properties file is null. Setting default values
[(439) API] - Starting COMPSs Runtime v2.7 (build 20200519-1005.
—1r6093e5ac94d67250€097a6fad9d3ec00d676febc)

Initialization time: 4.112615
Multiplication time: 2.366103
Total time: 6.478717

[(5609) API] - Execution Finished

Figure 50 depicts the generated task dependency graph. The dataset generation can be identified in the blue tasks,
while the white tasks represent the multiplication of a block with another.

600000600 16666066660600000000000000000000000
— — — — P — —_—
e

Figure 50: Python matrix multiplication tasks graph

8.2.6 Lysozyme in water

This example will guide a new user through the usage of the @binary, @mpi and @constraint decorators for setting
up a simulation system containing a set of proteins (lysozymes) in boxes of water with ions. Each step contains
an explanation of input and output, using typical settings for general use.

Extracted from: http://www.mdtutorials.com/gmx/lysozyme/index.html Originally done by: Justin A. Lemkul,
Ph.D. From: Virginia Tech Department of Biochemistry

Note: This example reaches up to stage 4 (energy minimization).

Important: This application requires Gromacs gmx and gmx_mpi.

from os import listdir
from os.path import isfile, join
import sys

from pycompss.api.task import task

from pycompss.api.constraint import constraint
from pycompss.api.binary import binary

from pycompss.api.mpi import mpi

from pycompss.api.parameter import *

REHAARBRAARE
Step 1 tasks
#ORBHAARBRAARE #

(continues on next page)

254 Chapter 8. Sample Applications

http://www.mdtutorials.com/gmx/lysozyme/index.html

COMPSs Documentation, 2.9

(continued from previous page)

@binary (binary="'${GMX_BIN}/gmx')
Otask(protein=FILE_IN,
structure=FILE_OUT,
topology=FILE_QOUT)
def generate_topology(mode='pdb2gmx"',
protein_flag='-f', protein=None,
structure_flag='-o0', structure=None,
topology_flag='-p', topology=None,
flags='-ignh',
forcefield_flag='-ff', forcefield='oplsaa',
water_flag='-water', water='spce'):
Command: gmx pdb2gmz -f protein.pdb -o structure.gro -p topology.top -ignh -ff amber03 -
—water tip3p
pass

REHAARERAARE
Step 2 tasks
#ORBHAARBRAARE #

Obinary(binary="'${GMX_BIN}/gmx')
Otask(structure=FILE_IN,
structure_newbox=FILE_QUT)
def define_box(mode='editconf',
structure_flag='-f', structure=None,
structure_newbox_flag='-o', structure_newbox=None,
center_flag='-c',
distance_flag='-d', distance='1.0',
boxtype_flag='-bt', boxtype='cubic'):
Command: gmx editconf -f structure.gro -o structure_newbox.gro -c -d 1.0 -bt cubic
pass

REHAAREHAARE
Step 3 tasks
#ORBHAARBRAARE #

Obinary(binary="'${GMX_BIN}/gmx')
Otask(structure_newbox=FILE_IN,
protein_solv=FILE_OUT,
topology=FILE_IN)
def add_solvate(mode='solvate',
structure_newbox_flag='-cp', structure_newbox=None,
configuration_solvent_flag='-cs', configuration_solvent='spc216.gro',
protein_solv_flag='-o', protein_solv=None,
topology_flag='-p', topology=None):
Command: gmx solvate -cp structure_newbox.gro -cs spcl2l6.gro -o protein_solv.gro -p,
—~topology.top
pass

OREHAAREHAREE
Step 4 tasks
#OREHAARBRAARE #

@binary(binary="'${GMX_BIN}/gmx')
@task(conf=FILE_IN,
protein_solv=FILE_IN,

(continues on next page)

8.2. Python Sample applications 255

COMPSs Documentation, 2.9

(continued from previous page)

topology=FILE_IN,
output=FILE_Q0UT)
def assemble_tpr (mode='grompp',
conf_flag='-f', conf=None,
protein_solv_flag='-c', protein_solv=None,
topology_flag='-p', topology=None,
output_flag='-0', output=None):
Command: gmx grompp -f ioms.mdp -c protein_solv.gro -p topology.top -o iomns.tpr
pass

@binary(binary="'${GMX_BIN}/gmx')
Otask(ions=FILE_IN,
output=FILE_QOUT,
topology=FILE_IN,
group={Type:FILE_IN, StdI0Stream:STDIN})
def replace_solvent_with_ions(mode='genion',
ions_flag='-s', ions=None,
output_flag='-o0', output=None,
topology_flag='-p', topology=None,
pname_flag="'-pname', pname='NA',
nname_flag='-nname', nname='CL',
neutral_flag='-neutral',
group=None) :
Command: gmx genion -s ions.tpr -o 1AKI_solv_ions.gro -p topol.top -pname NA -nname CL -
—neutral < ../config/genion.group
pass

REHAARERAARE
Step 5 tasks
#ORBHAARBRAARE #

computing_units = "24"
computing_nodes = "1"

Qconstraint (computing_units=computing_units)
Ompi(runner="mpirun", binary="gmx_mpi", computing_nodes=computing_nodes)
Otask(em=FILE_IN,
em_energy=FILE_OUT)
def energy_minimization(mode='mdrun',
verbose_flag="'-v',
ompthreads_flag='-ntomp', ompthreads='0",
em_flag='-s', em=None,
em_energy_flag='-e', em_energy=None):
Command: gmx mdrun -v -s em.tpT
pass

AARAARARRERE
Step 6 tasks
#ORRRARRBRRRRE #

@binary (binary="'${GMX_BIN}/gmx')
Otask(em=FILE_IN,
output=FILE_QUT,
selection={Type:FILE_IN, StdIOStream:STDIN})
def energy_analisis(mode='energy',
em_flag='-f', em=None,

(continues on next page)

256 Chapter 8. Sample Applications

COMPSs Documentation, 2.9

(continued from previous page)

output_flag='-o0', output=None,
selection=None) :
Command: gmx energy -f em.edr -o output.zvg
pass

ORRRHABHARRAHRSE
MAIN FUNCTION
ORARRAARRRAARS

def main(dataset_path, output_path, config_path):
print("Starting demo")

protein_names = []
protein_pdbs = []

Look for proteins in the dataset folder
for £ in listdir(dataset_path):
if isfile(join(dataset_path, f)):
protein_names.append(f.split('."') [0])
protein_pdbs.append(join(dataset_path, f))
proteins = zip(protein_names, protein_pdbs)

Iterate over the proteins and process them
result_image_paths = []
for name, pdb in proteins:
1st step - Generate topology
structure = join(output_path, name + '.gro')
topology = join(output_path, name + '.top')
generate_topology(protein=pdb,
structure=structure,
topology=topology)
2nd step - Define bozx
structure_newbox = join(output_path, name +
define_box(structure=structure,
structure_newbox=structure_newbox)
3rd step - Add solwvate
protein_solv = join(output_path, name +

' _newbox.gro')

'_solv.gro')

add_solvate(structure_newbox=structure_newbox,
protein_solv=protein_solv,
topology=topology)

4th step - Add ions

Assemble with ions.mdp

ions_conf = join(config_path, 'ions.mdp')

'_ions.tpr')

ions = join(output_path, name +
assemble_tpr(conf=ions_conf,
protein_solv=protein_solv,
topology=topology,
output=ions)
protein_solv_ions = join(output_path, name +
group = join(config_path, 'genion.group') # 13 = SOL
replace_solvent_with_ions(ions=ions,
output=protein_solv_ions,
topology=topology,
group=group)
5th step - Minimize energy

'_solv_ions.gro')

(continues on next page)

8.2. Python Sample applications

257

COMPSs Documentation, 2.9

(continued from previous page)

Reasemble with minim.mdp
minim_conf = join(config_path, 'minim.mdp')
em = join(output_path, name + '_em.tpr')
assemble_tpr(conf=minim_conf,
protein_solv=protein_solv_ions,
topology=topology,
output=em)
em_energy = join(output_path, name + '_em_energy.edr')
energy_minimization(em=em,
em_energy=em_energy)
6th step - Energy analystis (generate xzvg image)
energy_result = join(output_path, name + '_potential.xvg')
energy_selection = join(config_path, 'energy.selection') # 10 = potential
energy_analisis(em=em_energy,
output=energy_result,
selection=energy_selection)

if __name__=='__main__"':
config_path = sys.argv[1]
dataset_path = sys.argv[2]

output_path = sys.argv[3]

main(dataset_path, output_path, config_path)

This application can be executed by invoking the runcompss command defining the config_path, dataset_path
and output_path where the application inputs and outputs are. For the sake of completeness, we show how to
execute this application in a Supercomputer. In this case, the execution will be enqueued in the supercomputer
queuing system (e.g. SLURM) through the use of the enqueue_compss command, where all parameters used in
runcompss must appear, as well as some parameters required for the queuing system (e.g. walltime).

The following code shows a bash script to submit the execution in MareNostrum IV supercomputer:

#!/bin/bash -e

Define script variables

scriptDir=$(pwd) /$(dirname $0)
execFile=${scriptDir}/src/lysozyme_in_water.py
appClasspath=${scriptDir}/src/
appPythonpath=${scriptDir}/src/

Retrieve arguments
numNodes=$1
executionTime=$2
tracing=$3

Leave application args on $@
shift 3

Load necessary modules

module purge

module load intel/2017.4 impi/2017.4 mk1/2017.4 bsc/1.0
module load COMPSs/2.7

module load gromacs/2016.4 # exposes gmzr_mpi binary

export GMX_BIN=/home/user/lysozymeb5.1.2/bin # ezposes gmz binary

(continues on next page)

258 Chapter 8. Sample Applications

COMPSs Documentation, 2.9

(continued from previous page)

Enqueue the application
enqueue_compss \
--num_nodes=$numNodes \
--exec_time=$executionTime \
--master_working_dir=. \
--worker_working_dir=/gpfs/home/user/lysozyme \
--tracing=$tracing \
--graph=true \

-d \
--classpath=$appClasspath \
--pythonpath=$appPythonpath \
--lang=python \

$execFile $0

RARRBHRBRARRAHARRARRARABRARRARARRARRARARRAHRARARRARR RS

APPLICATION EXECUTION EXAMPLE

Call:

./launch_md.sh <NUMBER_OF_NODES> <EXECUTION_TIME> <TRACING> <CONFIG_PATH> <DATASET_
—PATH> <OQUTPUT_PATH>

#

Exzample:

./launch_md.sh 2 10 false $(pwd)/config/ $(pwd)/dataset/ $(pwd)/output/

#

RARRAHAARARRARARRARRARRRRARRARRRRGRRRRR ARG RARRRRR R

Having the 1aki.pdb, 1u3m.pdb and 1xyw.pdb proteins in the dataset folder, the execution of this script produces
the submission of the job with the following output:

$./launch_md.sh 2 10 false $(pwd)/config/ $(pwd)/dataset/ $(pwd)/output/

remove mkl/2017.4 (LD_LIBRARY_PATH)

remove impi/2017.4 (PATH, MANPATH, LD_LIBRARY_PATH)

Set INTEL compilers as MPI wrappers backend

load impi/2017.4 (PATH, MANPATH, LD_LIBRARY_PATH)

load mkl/2017.4 (LD_LIBRARY_PATH)

load java/8ul31 (PATH, MANPATH, JAVA_HOME, JAVA_ROOT, JAVA_BINDIR, SDK_HOME, JDK_HOME, JRE_
—HOME)

load papi/5.5.1 (PATH, LD_LIBRARY_PATH, C_INCLUDE_PATH)

Loading default Python 2.7.13.

* For alternative Python versions, please set the COMPSS_PYTHON_VERSION environment variable
—with 2, 3, 2-jupyter or 3-jupyter before loading the COMPSs module.

load PYTHON/2.7.13 (PATH, MANPATH, LD_LIBRARY_PATH, LIBRARY_PATH, PKG_CONFIG_PATH, C_INCLUDE_
—PATH, CPLUS_INCLUDE_PATH, PYTHONHOME)

load 1zo/2.10 (LD_LIBRARY_PATH,PKG_CONFIG_PATH,CFLAGS,CXXFLAGS,LDFLAGS)

load boost/1.64.0_py2 (LD_LIBRARY_PATH, LIBRARY_PATH, C_INCLUDE_PATH, CPLUS_INCLUDE_PATH,
—BOOST_ROQT)

load COMPSs/2.7 (PATH, CLASSPATH, MANPATH, GAT_LOCATION, COMPSS_HOME, JAVA_TOOL_OPTIONS,
—LDFLAGS, CPPFLAGS)

load gromacs/2016.4 (PATH, LD_LIBRARY_PATH)

SC Configuration: default.cfg
JobName: COMPSs
Queue: default
Reservation: disabled
Num Nodes: 2

Num Switches: 0

(continues on next page)

8.2. Python Sample applications 259

COMPSs Documentation, 2.9

(continued from previous page)

GPUs per node: 0

Job dependency: None
Exec-Time: 00:10:00
QoS: debug
Constraints: disabled
Storage Home: null
Storage Properties:

Other:

--sc_cfg=default.cfg

--qos=debug

--master_working_dir=.

--worker_working_dir=/gpfs/home/user/lysozyme

--tracing=false

--graph=true

--classpath=/home/user/lysozyme/./src/

--pythonpath=/home/user/lysozyme/./src/

--lang=python /home/user/lysozyme/./src/lysozyme_in_water.py /home/user/
—lysozyme/config/ /home/user/lysozyme/dataset/ /home/user/lysozyme/output/

Temp submit script is: /scratch/tmp/tmp.sMHLsaTUJj
Requesting 96 processes
Submitted batch job 10178129

Once executed, it produces the compss-10178129.out file, containing all the standard output messages flushed
during the execution:

$ cat compss-10178129.out

—————— Launching COMPSs application ------
[INFO] Using default execution type: compss
[INFO] Relative Classpath resolved: /home/user/lysozyme/./src/:

————————————————— Executing lysozyme_in_water.py -----------------———-———-—-——-
[(590) API] - Starting COMPSs Runtime v2.7 (build 20200519-1005.
—16093e5ac94d67250e097a6fad9d3ec00d676fe6c)

Starting demo

Here it takes some time to process the dataset

[(290788) API] - Execution Finished

[LAUNCH_COMPSS] Waiting for application completion

Since the execution has been performed with the task dependency graph generation enabled, the result is depicted
in Figure 51. It can be identified that PyCOMPSs has been able to analyse the three given proteins in parallel.

The output of the application is a set of files within the output folder. It can be seen that the files decorated
with FILE OUT are stored in this folder. In particular, potential (.xvg) files represent the final results of the
application, which can be visualized with GRACE.

user@login:~/lysozyme/output> 1ls -1

total 79411

-rw-r--r-- 1 user group 8976 may 19 17:06 laki_em_energy.edr
-rw-r--r-- 1 user group 1280044 may 19 17:03 laki_em.tpr
-rw-r--r-- 1 user group 88246 may 19 17:03 laki.gro
-rw-r--r-- 1 user group 1279304 may 19 17:03 laki_ions.tpr

(continues on next page)

260 Chapter 8. Sample Applications

COMPSs Documentation, 2.9

‘‘‘‘‘

@

Figure 51: Python Lysozyme in Water tasks graph

(continued from previous page)

-IrW-r--Ir--
-TW-r--T--
-IrW-r--T--
-IrWw-r--Ir--
-IrW-r--Ir--
-IrWw-r--r--
-IrWw-r--r--
-TW-T--T--
-IrW-r--I--
-IrW-r--I--
-IrW-r--I--
-IrW-r--r--
-TW-r--T--
-IrW-r--I--
-IrWw-r--Ir--
-IrW-r--Ir--
-IrW-r--r--
-TW-r--T--
-IrW-r--T--
-IrW-r--Ir--
-IrW-r--Ir--
-IrWw-r--r--
-IrWw-r--r--
-IrW-r--I--
-IrW-r--I--
-IrW-r--r--
-IrW-r--r--
-IrWw-r--r--
-TW-r--T--
-IrW-r--I--
-IrW-r--Ir--
-IrW-r--I--
-IrW-r--r--
-rW-r--Ir--
-IrW-r--I--
-IrW-r--I--
-IrW-r--Ir--
-IrW-r--r--

B R R R R R R R R R R R R R RRRRRRR R B B B B B B R RRRRRE R R R

-IrWw-r--r--

88246
2141
1525186
1524475
577616
577570
577601
577570
577601
577601
577570
577601
577570
577601
577570
577601
577570
8976
1416272
82046
1415196
82046
2151
1837046
1836965
537950

user group
group
group
group
group
group
group
group
group
group
group
group
group
group
group
group
group
group
group
group
group
group
group
group
group
group

user
user
user
user
user
user
user
user
user
user
user
user
user
user
user
user
user
user
user
user
user
user
user
user
user

user group
group
group
group
group
group
group
group
group
group
group
group
group

user
user
user
user
user
user
user
user
user
user
user
user

537904
537935
537904
537935
537935
537904
537935
537904
537935
537904
537935
537904

8780

may
may
may
may
may
ene
may
may
may
ene
ene
ene
ene
ene
ene
ene
may
may
may
may
may
may
may
may
may
may
ene
may
may
may
ene
ene
ene
ene
ene
ene
ene
may
may

19
19
19
19
19
24
19
19
19
24
24
24
24
24
24
24
19
19
19
19
19
19
19
19
19
19
24
19
19
19
24
24
24
24
24
24
24
19
19

17
17
17
17
17

16
17
17

16
16
16
16
16
16
16
17
17
17
17
17
17
17
17
17

16
17
17

16
16
16
16
16
16
16
17

:03
:06
:03
:03
:03
16:
:59
:03
:03
16:
:20
:20
:25
:25
:31
:31
:59
:08
:03
:03
:03
:03
:08
:03
:03
:03
16:
:59
:03
:03
16:
120
120
:25
:25
:31
:31
:59
:08

11

11

11

11

laki_newbox.gro
laki_potential.xvg <-------
laki_solv.gro
laki_solv_ions.gro
laki.top
#laki.top.1#
#laki.top.10#
#laki.top.11#
#laki.top.12#
#laki.top.2#
#laki.top.3#
#laki.top.4#
#laki.top.5#
#laki.top.6#
#laki.top.7#
#laki.top.8#
#laki.top.9#
lu3m_em_energy.edr
lu3m_em.tpr
1u3m.gro
lu3m_ions.tpr
1u3m_newbox.gro
lu3m_potential.xvg <-------
1lu3m_solv.gro
1u3m_solv_ions.gro
1u3m. top

#1u3m.
#1u3m.
#1u3m.
#1u3m.
#1u3m.
#1u3m.
#1u3m.
#1u3m.
#1u3m.
#1u3m.
#1u3m.
#1u3m.

top.1#
top.10#
top.11#
top.12#
top.2#
top.3#
top.4#
top.5#
top.6#
top.7#
top.8#
top.9#

1xyw_em_energy.edr

(continues on next page)

8.2. Python

Sample applications

261

COMPSs Documentation, 2.9

(continued from previous page)

-rw-r--r-- 1 user group 1408872 may 19 17:03 1lxyw_em.tpr
-rw-r--r-- 1 user group 80112 may 19 17:03 1xyw.gro
-rw-r--r-- 1 user group 1407844 may 19 17:03 1xyw_ions.tpr
-rw-r--r-- 1 user group 80112 may 19 17:03 1xyw_newbox.gro
-rw-r--r-- 1 user group 2141 may 19 17:08 1xyw_potential.xvg <-------
-rw-r--r-- 1 user group 1845237 may 19 17:03 1lxyw_solv.gro
-rw-r--r-- 1 user group 1845066 may 19 17:03 1xyw_solv_ions.gro
-rw-r--r-- 1 user group 524026 may 19 17:03 1xyw.top
-rw-r--r-- 1 user group 523980 ene 24 16:11 #lxyw.top.1#
-rw-r--r-- 1 user group 524011 may 19 16:59 #lxyw.top.10#
-rw-r--r-- 1 user group 523980 may 19 17:03 #lxyw.top.11l#
-rw-r--r-- 1 user group 524011 may 19 17:03 #lxyw.top.12#
-rw-r--r-- 1 user group 524011 ene 24 16:11 #lxyw.top.2#
-rw-r--r-- 1 user group 523980 ene 24 16:20 #lxyw.top.3#
-rw-r--r-- 1 user group 524011 ene 24 16:20 #lxyw.top.4#
-rw-r--r-- 1 user group 523980 ene 24 16:25 #lxyw.top.5#
-rw-r--r-- 1 user group 524011 ene 24 16:25 #lxyw.top.6#
-rw-r--r-- 1 user group 523980 ene 24 16:31 #lxyw.top.7#
-rw-r--r-- 1 user group 524011 ene 24 16:31 #lxyw.top.8#
-rw-r--r-- 1 user group 523980 may 19 16:59 #lxyw.top.9#

Figure 52 depicts the potential results obtained for the 1xyw protein.

GROMACS Energies
-5,2e+0: T T
1
-54¢+05 _
-5,6e+05 — _
2 -5.8¢+05 |- .
% €

g [-
-6e+05 (— —
-6,2¢+05 |~ _
6,4e405 |~ B

\ \ \ \
10 20 30 40 5

Time (ps)

Figure 52: 1xyw Potential result (plotted with GRACE)

8.3 C/C++ Sample applications

The first two examples in this section are simple applications developed in COMPSs to easily illustrate how to
code, compile and run COMPSs applications. These applications are executed locally and show different ways to
take advantage of all the COMPSs features.

The rest of the examples are more elaborated and consider the execution in a cloud platform where the VMs mount
a common storage on /sharedDisk directory. This is useful in the case of applications that require working with
big files, allowing to transfer data only once, at the beginning of the execution, and to enable the application to
access the data directly during the rest of the execution.

The Virtual Machine available at our webpage (http://compss.bsc.es/) provides a development environment with
all the applications listed in the following sections. The codes of all the applications can be found under the
/home/compss/tutorial_apps/c/ folder.

262 Chapter 8. Sample Applications

http://compss.bsc.es/

COMPSs Documentation,

2.9

8.3.1 Simple

The Simple application is a C application that increases a counter by means of a task. The counter is stored inside
a file that is transfered to the worker when the task is executed. Thus, the tasks inferface is defined as follows:

// stimple.tdl
interface simple {
void increment(inout File filename);

};

Next we also provide the invocation of the task from the main code and the increment’s method code.

// simple.cc

int main(int argc, char *argv[]) {
// Check and get parameters
if (argc '= 2) {
usage () ;
return -1;
}
string initialValue = argv[1];
file fileName = strdup(FILE_NAME) ;

// Init compss
compss_on() ;

// Write file

ofstream fos (fileName);

if (fos.is_open()) {

fos << initialValue << endl;

fos.close();

} else {

cerr << "[ERROR] Unable to open file" << endl;
return -1;

}

cout << "Initial counter value is " << initialValue << endl;

// Execute increment
increment (&fileName) ;

// Read nmew value

string finalValue;

ifstream fis;

compss_ifstream(fileName, fis);

if (fis.is_open()) {

if (getline(fis, finalValue)) {
cout << "Final counter value is " << finalValue << endl;
fis.close();

} else {
cerr << "[ERROR] Unable to read final value" << endl;
fis.close();
return -1;

}

} else {

cerr << "[ERROR] Unable to open file" << endl;

return -1;

}

(continues on next page)

8.3. C/C++ Sample applications

263

COMPSs Documentation, 2.9

(continued from previous page)

// Close COMPSs and end
compss_off () ;
return O;

//simple-functions.cc

void increment(file *fileName) {

cout << "INIT TASK" << endl;

cout << "Param: " << xfileName << endl;

// Read walue

char initialValue;

ifstream fis (xfileName);

if (fis.is_open()) {

if (fis >> initialValue) {
fis.close();

} else {
cerr << "[ERROR] Unable to read final value" << endl;
fis.close();

}

fis.close();

} else {

cerr << "[ERROR] Unable to open file" << endl;

}

// Increment

cout << "INIT VALUE: " << initialValue << endl;

int finalValue = ((int) (initialValue) - (int)('0')) + 1;
cout << "FINAL VALUE: " << finalValue << endl;

// Write new value

ofstream fos (xfileName);

if (fos.is_open()) {

fos << finalValue << endl;

fos.close();

} else {

cerr << "[ERROR] Unable to open file" << endl;
}

cout << "END TASK" << endl;

Finally, to compile and execute this application users must run the following commands:

compss@bsc:~$ cd ~/tutorial_apps/c/simple/

compss@bsc:~/tutorial_apps/c/simple$ compss_build_app simple
compss@bsc:~/tutorial_apps/c/simple$ runcompss --lang=c --project=./xml/project.xml --
—resources=./xml/resources.xml ~/tutorial_apps/c/simple/master/simple 1

[INFO] Using default execution type: compss

JVM_OPTIONS_FILE: /tmp/tmp.n2eZjgmDGo
COMPSS_HOME: /opt/COMPSs
Args: 1

WARNING: COMPSs Properties file is null. Setting default values

(continues on next page)

264 Chapter 8. Sample Applications

COMPSs Documentation, 2.9

(continued from previous page)

[(617) API] - Starting COMPSs Runtime v<version>

Initial counter value is 1

[BINDING] - QGS_register - Ref: 0x7fffa35d0f48

[BINDING] - @©GS_register - ENTRY ADDED

[BINDING] - @GS_register - Entry.type: 9

[BINDING] - @GS_register - Entry.classname: File

[BINDING] - @GS_register - Entry.filename: counter

[BINDING] - QGS_register - setting filename: counter

[BINDING] - QGS_register - Filename: counter

[BINDING] - @GS_register - Result is O

[BINDING] - Qcompss_wait_on - Entry.type: 9

[BINDING] - Qcompss_wait_on - Entry.classname: File

[BINDING] - Qcompss_wait_on - Entry.filename: counter

[BINDING] - G@compss_wait_on - Runtime filename: /home/compss/.COMPSs/simple_01/
—tmpFiles/d1v2_1479141705574.1T

[BINDING] - Qcompss_wait_on - File renaming: /home/compss/.COMPSs/simple_01/tmpFiles/

—d1v2_1479141705574.1IT to counter
Final counter value is 2
[(3755) API] - Execution Finished

8.3.2 Increment
The Increment application is a C application that increases N times three different counters. Each increase step is
developed by a separated task. The purpose of this application is to show parallelism between the three counters.

Next we provide the main code of this application. The code inside the increment task is the same than the
previous example.

// increment.cc

int main(int argc, char *argv[]) {
// Check and get parameters
if (argc !'= 5) {
usage();
return -1;
}
int N = atoi(argv[1]);
string counterl = argv[2];
string counter2 = argv[3];
string counter3 = argv[4];

// Init COMPSs
compss_on() ;

// Inittalize counter files

file fileNamel = strdup(FILE_NAME1);

file fileName2 = strdup(FILE_NAME2) ;

file fileName3 = strdup(FILE_NAME3);

initializeCounters(counterl, counter2, counter3, fileNamel, fileName2, fileName3);

// Print initial counters state
cout << "Initial counter values: " << endl;
printCounterValues(fileNamel, fileName2, fileName3);

(continues on next page)

8.3. C/C++ Sample applications 265

COMPSs Documentation, 2.9

(continued from previous page)

// Ezecute increment tasks
for (dnt i = 0; 1 < N; ++i) {
increment (&fileNamel) ;
increment (&fileName?2) ;
increment (&fileName3) ;

}
// Print final state
cout << "Final counter values: " << endl;

printCounterValues(fileNamel, fileName2, fileName3);

// Stop COMPSs
compss_off();

return O;

As shown in the main code, this application has 4 parameters that stand for:

1. N: Number of times to increase a counter
2. counterl: Initial value for counter 1
3. counter2: Initial value for counter 2
4. counter3: Initial value for counter 3

Next we will compile and run the Increment application with the -g option to be able to generate the final graph
at the end of the execution.

compss@bsc:~$ cd ~/tutorial_apps/c/increment/
compss@bsc:~/tutorial_apps/c/increment$ compss_build_app increment
compss@bsc:~/tutorial_apps/c/increment$ runcompss --lang=c -g --project=./xml/project.xml --

—resources=./xml/resources.xml ~/tutorial_apps/c/increment/master/increment 10 1 2 3
[INFO] Using default execution type: compss

JVM_OPTIONS_FILE: /tmp/tmp.mgCheFd3kL
COMPSS_HOME: /opt/COMPSs
Args: 10 1 2 3

WARNING: COMPSs Properties file is null. Setting default values

[(655)

APT]

Starting COMPSs Runtime v<version>

Initial counter values:

- Counterl value is 1

- Counter2 value is 2

Counter3d value is 3

[BINDING] - @GS_register - Ref: 0x7ffeal7719f0
[BINDING] - @GS_register - ENTRY ADDED
[BINDING] - @GS_register - Entry.type: 9
[BINDING] - @GS_register - Entry.classname: File
[BINDING] - @GS_register - Entry.filename: filel.txt
[BINDING] - QGS_register - setting filename: filel.txt
[BINDING] - @GS_register - Filename: filel.txt
[BINDING] - @GS_register - Result is O
[BINDING] - @GS_register - Ref: 0x7ffeal7719f8
[BINDING] - @GS_register - ENTRY ADDED
[BINDING] - @GS_register - Entry.type: 9
(continues on next page)
266 Chapter 8. Sample Applications

COMPSs Documentation, 2.9

(continued from previous page)

BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]

L TN e I s T e N e Y s T s O e Y s T e T e Y s T e O e Y s T e Y s T e N Y e O s Y Y e N e Y IO e O s Y et O s N e Yt O e A s T e N e Y s T e O Y s T e N Y s O e Y e T e T s Y s T s O e Y s Y e B s B s B |

0GS_register
0GS_register
0GS_register
OGS_register
OGS_register
0GS_register
0GS_register
0GS_register
0GS_register
OGS_register
OGS_register
0GS_register
0GS_register
0GS_register
OGS_register
OGS_register
0GS_register
0GS_register
0GS_register
0GS_register
OGS_register
@GS_register
0GS_register
0GS_register
0GS_register
OGS_register
OGS_register
0GS_register
0GS_register
0GS_register
OGS_register
OGS_register
0GS_register
0GS_register
0GS_register
0GS_register
OGS_register
@GS_register
0GS_register
0GS_register
0GS_register
OGS_register
OGS_register
0GS_register
0GS_register
0GS_register
OGS_register
OGS_register
0GS_register
0GS_register
0GS_register
0GS_register
OGS_register
@GS_register
0GS_register
0GS_register

Entry.classname: File
Entry.filename: file2.txt
setting filename: file2.txt
Filename: file2.txt
Result is O

Ref: 0x7ffeal771a00

ENTRY ADDED

Entry.type: 9
Entry.classname: File
Entry.filename: file3.txt
setting filename: file3.txt
Filename: file3.txt
Result is O

Ref: 0x7ffeal7719£f0

ENTRY FOUND

Entry.type: 9
Entry.classname: File
Entry.filename: filel.txt
setting filename: filel.txt
Filename: filel.txt
Result is 0

Ref: O0x7ffeal7719f8

ENTRY FOUND

Entry.type: 9
Entry.classname: File
Entry.filename: file2.txt
setting filename: file2.txt
Filename: file2.txt
Result is O

Ref: 0x7ffeal771a00

ENTRY FOUND

Entry.type: 9
Entry.classname: File
Entry.filename: file3.txt
setting filename: file3.txt
Filename: file3.txt
Result is O

Ref: 0x7ffeal7719f0

ENTRY FOUND

Entry.type: 9
Entry.classname: File
Entry.filename: filel.txt
setting filename: filel.txt
Filename: filel.txt
Result is O

Ref: 0x7ffeal7719£f8

ENTRY FOUND

Entry.type: 9
Entry.classname: File
Entry.filename: file2.txt
setting filename: file2.txt
Filename: file2.txt
Result is 0

Ref: 0x7ffeal771a00

ENTRY FOUND

Entry.type: 9

(continues on next page)

8.3. C/C++ Sample applications

267

COMPSs Documentation,

2.9

(continued from previous page)

[BINDING] @GS_register Entry.classname: File

[BINDING] @GS_register Entry.filename: file3.txt

[BINDING] Q@GS_register setting filename: file3.txt
[BINDING] Q@GS_register Filename: file3.txt

[BINDING] Q@GS_register Result is 0

[BINDING] @GS_register Ref: Ox7ffeal7719f0

[BINDING] 0GS_register ENTRY FOUND

[BINDINGI] @GS_register Entry.type: 9

[BINDING] OGS_register Entry.classname: File

[BINDING] Q@GS_register Entry.filename: filel.txt

[BINDING] Q@GS_register setting filename: filel.txt
[BINDING] @GS_register Filename: filel.txt

[BINDING] @GS_register Result is O

[BINDINGI] Q@GS_register Ref: Ox7ffeal7719£f8

[BINDING] OGS_register ENTRY FOUND

[BINDING] Q@GS_register Entry.type: 9

[BINDING] @GS_register Entry.classname: File

[BINDING] @GS_register Entry.filename: file2.txt

[BINDING] @GS_register setting filename: file2.txt
[BINDING] Q@GS_register Filename: file2.txt

[BINDING] Q@GS_register Result is 0

[BINDING] Q@GS_register Ref: 0x7ffeal771a00

[BINDING] 0GS_register ENTRY FOUND

[BINDINGI] @GS_register Entry.type: 9

[BINDINGI] OGS_register Entry.classname: File

[BINDING] Q@GS_register Entry.filename: file3.txt

[BINDING] Q@GS_register setting filename: file3.txt
[BINDING] @GS_register Filename: file3.txt

[BINDING] @GS_register Result is O

[BINDINGI] Q@GS_register Ref: 0x7ffeal7719f0

[BINDING] OGS_register ENTRY FOUND

[BINDING] Q@GS_register Entry.type: 9

[BINDING] @GS_register Entry.classname: File

[BINDING] @GS_register Entry.filename: filel.txt

[BINDING] @GS_register setting filename: filel.txt
[BINDING] QGS_register Filename: filel.txt

[BINDING] Q@GS_register Result is 0

[BINDING] Q@GS_register Ref: O0x7ffeal7719f8

[BINDING] 0GS_register ENTRY FOUND

[BINDINGI] @GS_register Entry.type: 9

[BINDINGI] OGS_register Entry.classname: File

[BINDING] Q@GS_register Entry.filename: file2.txt

[BINDING] Q@GS_register setting filename: file2.txt
[BINDING] @GS_register Filename: file2.txt

[BINDING] @GS_register Result is O

[BINDINGI] Q@GS_register Ref: 0x7ffeal771a00

[BINDING] OGS_register ENTRY FOUND

[BINDING] Q@GS_register Entry.type: 9

[BINDING] @GS_register Entry.classname: File

[BINDING] @GS_register Entry.filename: file3.txt

[BINDING] @GS_register setting filename: file3.txt
[BINDING] Q@GS_register Filename: file3.txt

[BINDING] Q@GS_register Result is 0

[BINDING] @GS_register Ref: 0x7ffeal7719f0

[BINDING] - @GS_register - ENTRY FOUND

[BINDING] - @GS_register - Entry.type: 9

(continues on next page)

268 Chapter 8. Sample Applications

COMPSs Documentation, 2.9

(continued from previous page)

BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]
BINDING]

L TN e I s T e N e Y s T s O e Y s T e T e Y s T e O e Y s T e Y s T e N Y e O s Y Y e N e Y IO e O s Y et O s N e Yt O e A s T e N e Y s T e O Y s T e N Y s O e Y e T e T s Y s T s O e Y s Y e B s B s B |

0GS_register
0GS_register
0GS_register
OGS_register
OGS_register
0GS_register
0GS_register
0GS_register
0GS_register
OGS_register
OGS_register
0GS_register
0GS_register
0GS_register
OGS_register
OGS_register
0GS_register
0GS_register
0GS_register
0GS_register
OGS_register
@GS_register
0GS_register
0GS_register
0GS_register
OGS_register
OGS_register
0GS_register
0GS_register
0GS_register
OGS_register
OGS_register
0GS_register
0GS_register
0GS_register
0GS_register
OGS_register
@GS_register
0GS_register
0GS_register
0GS_register
OGS_register
OGS_register
0GS_register
0GS_register
0GS_register
OGS_register
OGS_register
0GS_register
0GS_register
0GS_register
0GS_register
OGS_register
@GS_register
0GS_register
0GS_register

Entry.classname: File
Entry.filename: filel.txt
setting filename: filel.txt
Filename: filel.txt
Result is O

Ref: O0x7ffeal7719f8

ENTRY FOUND

Entry.type: 9
Entry.classname: File
Entry.filename: file2.txt
setting filename: file2.txt
Filename: file2.txt
Result is O

Ref: 0x7ffeal771a00

ENTRY FOUND

Entry.type: 9
Entry.classname: File
Entry.filename: file3.txt
setting filename: file3.txt
Filename: file3.txt
Result is 0

Ref: 0x7ffeal7719f0

ENTRY FOUND

Entry.type: 9
Entry.classname: File
Entry.filename: filel.txt
setting filename: filel.txt
Filename: filel.txt
Result is O

Ref: 0x7ffeal7719£f8

ENTRY FOUND

Entry.type: 9
Entry.classname: File
Entry.filename: file2.txt
setting filename: file2.txt
Filename: file2.txt
Result is O

Ref: 0x7ffeal771a00

ENTRY FOUND

Entry.type: 9
Entry.classname: File
Entry.filename: file3.txt
setting filename: file3.txt
Filename: file3.txt
Result is O

Ref: 0x7ffeal7719£f0

ENTRY FOUND

Entry.type: 9
Entry.classname: File
Entry.filename: filel.txt
setting filename: filel.txt
Filename: filel.txt
Result is 0

Ref: O0x7ffeal7719f8

ENTRY FOUND

Entry.type: 9

(continues on next page)

8.3. C/C++ Sample applications

269

COMPSs Documentation,

2.9

(continued from previous page)

[BINDING] @GS_register Entry.classname: File

[BINDING] @GS_register Entry.filename: file2.txt

[BINDING] Q@GS_register setting filename: file2.txt
[BINDING] Q@GS_register Filename: file2.txt

[BINDING] Q@GS_register Result is 0

[BINDING] @GS_register Ref: 0x7ffeal771a00

[BINDING] 0GS_register ENTRY FOUND

[BINDINGI] @GS_register Entry.type: 9

[BINDING] OGS_register Entry.classname: File

[BINDING] Q@GS_register Entry.filename: file3.txt

[BINDING] Q@GS_register setting filename: file3.txt
[BINDING] @GS_register Filename: file3.txt

[BINDING] @GS_register Result is O

[BINDINGI] Q@GS_register Ref: 0x7ffeal7719f0

[BINDING] OGS_register ENTRY FOUND

[BINDING] Q@GS_register Entry.type: 9

[BINDING] @GS_register Entry.classname: File

[BINDING] @GS_register Entry.filename: filel.txt

[BINDING] @GS_register setting filename: filel.txt
[BINDING] Q@GS_register Filename: filel.txt

[BINDING] Q@GS_register Result is 0

[BINDING] Q@GS_register Ref: Ox7ffeal7719f8

[BINDING] 0GS_register ENTRY FOUND

[BINDINGI] @GS_register Entry.type: 9

[BINDINGI] OGS_register Entry.classname: File

[BINDING] Q@GS_register Entry.filename: file2.txt

[BINDING] Q@GS_register setting filename: file2.txt
[BINDING] @GS_register Filename: file2.txt

[BINDING] @GS_register Result is O

[BINDINGI] Q@GS_register Ref: 0x7ffeal771a00

[BINDING] OGS_register ENTRY FOUND

[BINDING] Q@GS_register Entry.type: 9

[BINDING] @GS_register Entry.classname: File

[BINDING] @GS_register Entry.filename: file3.txt

[BINDING] @GS_register setting filename: file3.txt
[BINDING] QGS_register Filename: file3.txt

[BINDING] Q@GS_register Result is 0

[BINDING] Q@GS_register Ref: 0x7ffeal7719f0

[BINDING] 0GS_register ENTRY FOUND

[BINDINGI] @GS_register Entry.type: 9

[BINDINGI] OGS_register Entry.classname: File

[BINDING] Q@GS_register Entry.filename: filel.txt

[BINDING] Q@GS_register setting filename: filel.txt
[BINDING] @GS_register Filename: filel.txt

[BINDING] @GS_register Result is O

[BINDINGI] Q@GS_register Ref: Ox7ffeal7719£f8

[BINDING] OGS_register ENTRY FOUND

[BINDING] Q@GS_register Entry.type: 9

[BINDING] @GS_register Entry.classname: File

[BINDING] @GS_register Entry.filename: file2.txt

[BINDING] @GS_register setting filename: file2.txt
[BINDING] Q@GS_register Filename: file2.txt

[BINDING] Q@GS_register Result is 0

[BINDING] @GS_register Ref: 0x7ffeal771a00

[BINDING] - @GS_register - ENTRY FOUND

[BINDING] - @GS_register - Entry.type: 9

(continues on next page)

270 Chapter 8. Sample Applications

COMPSs Documentation,

2.9

(continued from previous page)

[BINDING] -
[BINDING] -
[BINDING] -
[BINDING] -
[BINDING] -
[BINDING] -
[BINDING] -
[BINDING] -
[BINDING] -
—tmpFiles/d1iv11_
[BINDING] -
—tmpFiles/divil_
[BINDING] -
[BINDING] -
[BINDING] -
[BINDING] -
—tmpFiles/d2v11_
[BINDING] -
—tmpFiles/d2v11_
[BINDING] -
[BINDING] -
[BINDING] -
[BINDING] -
—tmpFiles/d3vi1_
[BINDING] -
—tmpFiles/d3v11_

OGS_register -
OGS_register -
OGS_register -
@GS_register -
OGS_register
Qcompss_wait_on
Ocompss_wait_on
Q@compss_wait_on
Q@compss_wait_on
1479142004112 .IT
Q@compss_wait_on
1479142004112 .IT
Ocompss_wait_on
Q@compss_wait_on
Qcompss_wait_on
Qcompss_wait_on
1479142004112 .IT
Ocompss_wait_on
1479142004112.IT
Q@compss_wait_on
Qcompss_wait_on
Q@compss_wait_on
Ocompss_wait_on
1479142004112.IT
Q@compss_wait_on
1479142004112.IT

Final counter values:

- Counterl value
- Counter?2 value
- Counter3 value
[(4288) APT]

is 2
is 3
is 4

Entry.classname: File
Entry.filename: file3.txt
setting filename: file3.txt
Filename: file3.txt

- Result is O

- Entry.type: 9

- Entry.classname: File

- Entry.filename: filel.txt

- Runtime filename: /home/compss/.COMPSs/increment_01/

- File renaming: /home/compss/.COMPSs/increment_01/
filel.txt

- Entry.type: 9

- Entry.classname: File

- Entry.filename: file2.txt

- Runtime filename: /home/compss/.COMPSs/increment_01/

- File renaming: /home/compss/.COMPSs/increment_01/
file2.txt

- Entry.type: 9

- Entry.classname: File

- Entry.filename: file3.txt

- Runtime filename: /home/compss/.COMPSs/increment_01/

- File renaming: /home/compss/.COMPSs/increment_01/
to file3.txt

- Execution Finished

By running the compss_gengraph command users can obtain the task graph of the above execution. Next we
provide the set of commands to obtain the graph show in Figure 53.

compss@bsc:~$ cd ~/.COMPSs/increment_01/monitor/
compss@bsc:~/.COMPSs/increment_01/monitor$ compss_gengraph complete_graph.dot
compss@bsc:~/.COMPSs/increment_01/monitor$ evince complete_graph.pdf

8.3. C/C++ Sample applications

271

COMPSs Documentation, 2.9

Figure 53: C increment tasks graph

272 Chapter 8. Sample Applications

Chapter 9

PyCOMPSs Player

The PyCOMPSs player (pycompss-player) provides a tool to use PyCOMPSs within local machines interactively
through docker containers. This tool has been implemented on top of the PyCOMPSs programming model, and it
is being developed by the Workflows and Distributed Computing group of the Barcelona Supercomputing Center,
and can be easily downloaded and installed from the Pypi repository.

9.1 Requirements and Installation

9.1.1 Requirements

e Python 3
e docker >= 17.12.0-ce
e docker for python

9.1.2 Installation

1. Install Docker (continue with step 2 if already installed):
1.1. Suggested Docker installation instructions:
e Docker for Mac. Or, if you prefer to use Homebrew.
e Docker for Ubuntu.
e Docker for Arch Linux.
Be aware that for some distributions the Docker package has been renamed from docker to
docker-ce. Make sure you install the new package.
1.2. Add user to docker group to run the containers as a non-root user:
e Instructions
1.3. Check that docker is correctly installed:

$ docker --version
$ docker ps # this should be empty as no docker processes are yet running.

2. Install docker for python (continue with step 3 if already installed):

$ python3 -m pip install docker

3. Install pycompss-player:
Since the PyCOMPSs playerpackage is available in Pypi, it can be easly installed with pip as follows:

$ python3 -m pip install pycompss-player

4. Check the pycompss-player installation:
In order to check that it is correctly installed, check that the pycompss-player executables (pycompss, compss
and dislib, which can be used indiferently) are available from your command line.

273

http://compss.bsc.es
https://github.com/bsc-wdc
https://www.bsc.es/
https://www.docker.com
https://pypi.org/project/docker/
https://store.docker.com/editions/community/docker-ce-desktop-mac
https://brew.sh/
https://docs.docker.com/install/linux/docker-ce/ubuntu/#install-docker-ce-1
https://wiki.archlinux.org/index.php/Docker#Installation
https://docs.docker.com/install/linux/linux-postinstall/
https://docker-py.readthedocs.io/en/stable/
https://pypi.org/project/pycompss-player/
https://pypi.org/project/pycompss-player/

COMPSs Documentation, 2.9

$ pycompss

[PyCOMPSs player options will be shown]

Tip: Some Linux distributions do not include the $HOME/.local/bin folder in the PATH environment
variable, preventing to access to the pycompss-player commands (and any other Python packages installed

in the user HOME).

If you experience that the pycompss| compss| dislib command is not available after the installation, you
may need to include the following line into your .bashrc and execute it in your current session:

$ export PATH=${HOME}/.local/bin:${PATH}

9.2 Usage

pycompss-player provides the pycompss command line tool (compss and dislib are also alternatives to

pycompss).

This command line tool enables to deal with docker in order to deploy a COMPSs infrastructure in containers.

The supported flags are:

$ pycompss

PyCOMPSs | COMPSS Player:

Usage: pycompss COMMAND | compss COMMAND | dislib COMMAND

Available commands:

init -w [WORK_DIR]

—DIR if -w is

set.

—i (it can also be

—variable).
kill:
update:

—master branch).

exec CMD:
—container.

-i [IMAGE]: initializes COMPSs in the current working dir or in WORK_
The COMPSs docker image to be used can be specified with -
specified with the COMPSS_DOCKER_IMAGE environment,

stops and kills all instances of the COMPSs.
updates the COMPSs docker image (use only when installing,

executes the CMD command inside the COMPSs master,

run [OPTIONS] FILE [PARAMS]: runs FILE with COMPSs, where OPTIONS are COMPSs options
—and PARAMS are application parameters.

monitor [start|stop]: starts or stops the COMPSs monitoring.

jupyter [PATH|FILE]: starts jupyter-notebook in the given PATH or FILE.

gengraph [FILE.dot]: converts the .dot graph into .pdf

components
components
Example
Example

components

Example

Example
—worker

list:

lists COMPSs actives components.

add RESOURCE: adds the RESOURCE to the pool of workers of the COMPSs.

given:
given:

Note:
remove
given:
given:

Note:

pycompss components add worker 2 # to add 2 local workers.

pycompss components add worker <IP>:<CORES> # to add a remote worker
compss and dislib can be used instead of pycompss in both examples.
RESOURCE: removes the RESOURCE to the pool of workers of the COMPSs.
pycompss components remove worker 2 # to remove 2 local workers.
pycompss components remove worker <IP>:<CORES> # to remove a remotey

compss and dislib can be used instead of pycompss in both examples.

274

Chapter 9. PyCOMPSs Player

COMPSs Documentation, 2.9

9.2.1 Start COMPSs infrastructure in your development directory

Initialize the COMPSs infrastructure where your source code will be (you can re-init anytime). This will allow
docker to access your local code and run it inside the container.

$ pycompss init # operates on the current directory as working directory.

Note: The first time needs to download the docker image from the repository, and it may take a while.

Alternatively, you can specify the working directory, the COMPSs docker image to use, or both at the same time:

You can also provide a path
pycompss init -w /home/user/replace/path/

0Or the COMPSs docker image to use
pycompss init -i compss/compss-tutorial:2.7

0Or both
pycompss init -w /home/user/replace/path/ -i compss/compss-tutorial:2.7

$
$
$
$
$
$
$
$

9.2.2 Running applications

In order to show how to run an application, clone the PyCOMPSs’ tutorial apps repository:

$ git clone https://github.com/bsc-wdc/tutorial_apps.git

Init the COMPSs environment in the root of the repository. The source files path are resolved from the init
directory which sometimes can be confusing. As a rule of thumb, initialize the library in a current directory
and check the paths are correct running the file with python3 path_to/file.py (in this case python3 python/
simple/src/simple.py).

$ cd tutorial_apps
$ pycompss init

Now we can run the simple.py application:

$ pycompss run python/simple/src/simple.py 1

The log files of the execution can be found at $HOME/.COMPSs.

You can also init the COMPSs environment inside the examples folder. This will mount the examples directory
inside the container so you can execute it without adding the path:

$ cd python/simple/src
$ pycompss init
$ pycompss run simple.py 1

9.2. Usage 275

COMPSs Documentation, 2.9

9.2.3 Running the COMPSs monitor

The COMPSs monitor can be started using the pycompss monitor start command. This will start the COMPSs
monitoring facility which enables to check the application status while running. Once started, it will show the url
to open the monitor in your web browser (i.e. http://127.0.0.1:8080/compss-monitor)

Important: Include the --monitor=<REFRESH_RATE_MS> flag in the execution before the binary to be executed.

$ cd python/simple/src

$ pycompss init

$ pycompss monitor start

$ pycompss run --monitor=1000 -g simple.py 1

$ # During the execution, go to the URL in your web browser
$ pycompss monitor stop

If running a notebook, just add the monitoring parameter into the COMPSs runtime start call.

Once finished, it is possible to stop the monitoring facility by using the pycompss monitor stop command.

9.2.4 Running Jupyter notebooks

Notebooks can be run using the pycompss jupyter command. Run the following snippet from the root of the
project:

$ cd tutorial_apps/python
$ pycompss init
$ pycompss jupyter ./notebooks

An alternative and more flexible way of starting jupyter is using the pycompss run command in the following way:

$ pycompss run jupyter-notebook ./notebooks --ip=0.0.0.0 --NotebookApp.token='' --allow-root

And access interactively to your notebook by opening following the http://127.0.0.1:8888/ URL in your web
browser.

Caution: If the notebook process is not properly closed, you might get the following warning when trying to
start jupyter notebooks again:

The port 8888 is already in use, trying another port.

To fix it, just restart the container with pycompss init.

9.2.5 Generating the task graph

COMPSs is able to produce the task graph showing the dependencies that have been respected. In order to
producee it, include the --graph flag in the execution command:

$ cd python/simple/src
$ pycompss init
$ pycompss run --graph simple.py 1

Once the application finishes, the graph will be stored into the ~\.COMPSs\app_name_XX\monitor\complete_-
graph.dot file. This dot file can be converted to pdf for easier visualilzation through the use of the gengraph
parameter:

276 Chapter 9. PyCOMPSs Player

http://127.0.0.1:8080/compss-monitor
http://127.0.0.1:8888/

COMPSs Documentation, 2.9

$ pycompss gengraph .COMPSs/simple.py_01/monitor/complete_graph.dot

The resulting pdf file will be stored into the ~\.COMPSs\app_name_XX\monitor\complete_graph.pdf file, that is,
the same folder where the dot file is.

9.2.6 Tracing applications or notebooks

COMPSs is able to produce tracing profiles of the application execution through the use of EXTRAE. In order to
enable it, include the --tracing flag in the execution command:

$ cd python/simple/src
$ pycompss init
$ pycompss run --tracing simple.py 1

If running a notebook, just add the tracing parameter into the COMPSs runtime start call.

Once the application finishes, the trace will be stored into the ~\.COMPSs\app_name_XX\trace folder. It can then
be analysed with Paraver.

9.2.7 Adding more nodes

Note: Adding more nodes is still in beta phase. Please report issues, suggestions, or feature requests on Github.

To add more computing nodes, you can either let docker create more workers for you or manually create and config
a custom node.

For docker just issue the desired number of workers to be added. For example, to add 2 docker workers:

$ pycompss components add worker 2

You can check that both new computing nodes are up with:

$ pycompss components list

If you want to add a custom node it needs to be reachable through ssh without user. Moreover, pycompss will try
to copy the working_dir there, so it needs write permissions for the scp.

For example, to add the local machine as a worker node:

$ pycompss components add worker '127.0.0.1:6'

e ‘127.0.0.1": is the IP used for ssh (can also be a hostname like ‘localhost’ as long as it can be resolved).
e ‘6: desired number of available computing units for the new node.

Important: Please be aware** that pycompss components will not list your custom nodes because they are not
docker processes and thus it can’t be verified if they are up and running.

9.2. Usage 277

https://github.com/bsc-wdc/

COMPSs Documentation, 2.9

9.2.8 Removing existing nodes

Note: Removing nodes is still in beta phase. Please report issues, suggestions, or feature requests on Github.

For docker just issue the desired number of workers to be removed. For example, to remove 2 docker workers:

$ pycompss components remove worker 2

You can check that the workers have been removed with:

$ pycompss components list

If you want to remove a custom node, you just need to specify its IP and number of computing units used when
defined.

$ pycompss components remove worker '127.0.0.1:6'

9.2.9 Stop pycompss

The infrastructure deployed can be easily stopped and the docker instances closed with the following command:

$ pycompss kill

278 Chapter 9. PyCOMPSs Player

https://github.com/bsc-wdc/

[1]:

[2]:

Chapter 10

PyCOMPSs Notebooks

This section contains all PyCOMPSs related tutorial notebooks (sources available in https://github.com /bsc-wdc/
notebooks).

It is divided into three main folders:

1. Syntax: Contains the main tutorial notebooks. They cover the syntax and main functionalities of Py-
COMPSs.

Hands-On: Contains example applications and hands-on exercises.

3. Demos: Contains demonstration notebooks.

o

10.1 Syntax

Here you will find the syntax notebooks used in the tutorials.

10.1.1 Basics of programming with PyCOMPSs

In this example we will see basics of programming with PyCOMPSs: - Runtime start - Task definition - Task
invocation - Runtime stop

10.1.1.1 Let’s get started with a simple example

First step

e Import the PyCOMPSs library

import pycompss.interactive as ipycompss

Second step

e Initialize COMPSs runtime. Parameters indicates if the execution will generate task graph, tracefile, monitor
interval and debug information.

import os
if 'BINDER_SERVICE_HOST' in os.environ:
ipycompss.start(graph=True,
project_xml='../xml/project.xml',
resources_xml="'../xml/resources.xml"')

(continues on next page)

279

https://github.com/bsc-wdc/notebooks
https://github.com/bsc-wdc/notebooks

[3]:

[4]:

[5]:

[6]:

COMPSs Documentation, 2.9

else:

(continued from previous page)

ipycompss.start(graph=True, monitor=1000) # debug=True, trace=True

KKK KoK oK oK oK oK oK ok oK oK o o o K K K KK oK oK oK oK oK oK ok ok ok ok o o K K K K K oK oK ok ok ok ok ok ok ok ok ok o K K
wokkckkkkkkkkkkkk PyCOMPSs Interactive skkskckkkkskokskokskokkkok
st sk sk sk sk ok ok ok ok ok ok ok ok o o o sk sk sk sk sk sk sk ok ok ok ok sk sk sk o o o ok sk sk sk sk sk sk sk sk sk sk sk ok sk sk ok ok ok ok

* Tt *
x) o\ /o \
7T /- I T B G I
x> : - Y N
£ (- - N N P /%
S L S N Lol /)
* () o .- *
* g -~ -~ -~ 3} *
* S U ~ -~ ~ *
* VA \ T *
x AT/ x
x S e \\=L x
* it R e *
* =T -~ Ay *
* /" -~ R *
* T-.< *
sk sk ok ok sk sk ok o ok sk sk sk o sk sk sk sk ok sk sk sk sk ok sk sk sk ok ok sksk sk s ok sk sk sk ok sk ok ok sksk ok ok ok
* - Starting COMPSs runtime... *
* - Log path : /home/javier/.COMPSs/InteractiveMode_01/
* - PyCOMPSs Runtime started... Have fun! *

>k >k >k 3K 3K 3k 3k 3k 5k 3k 3k 5k 5k 5k %k >k >k 3k 3k 3k 3k 3k %k 3k >k >k %k % K 5k 3k 5k 5k 5k 3k %k %k >k >k %k % K 3K 3k 5k %k %k %k %k >k >k k % %

Third step

e Import task module before annotating functions or methods

from pycompss.api.task import task

Fourth step

e Declare functions and decorate with @task those that should be tasks

Otask(returns=int)
def square(vall):
return vall * vall

Otask(returns=int)
def add(val2, val3):
return val2 + val3

Otask(returns=int)
def multiply(vall, val2):
return vall * val2

280

Chapter 10. PyCOMPSs Notebooks

COMPSs Documentation, 2.9

Fifth step

e Invoke tasks

[7]: a = square(2)

Found task: square

[8]: b = add(a, 4)

Found task: add

[9]: ¢ = multiply(b, 5)

Found task: multiply

Sixth step (last)

e Stop COMPSs runtime. All data can be synchronized in the main program .

[10]: ipycompss.stop(sync=True)

stk ok sk sk ok sk sk sk ek sk ok sk sk ok sk sk sk sk ks sk sk sk ok sk sk ok sk sk sk ks sk sk
woksckkkkkkkkkkkk STOPPING PyCOMPSS okkokskokakkokkokkokkokkkok
stk ok ok ok stk kst ke stk sk kb sk ok sk sk ok sk stk stk kol sk ok sk sk ok sk sk sk stk ko
Checking if any issue happened.

Synchronizing all future objects left on the user scope.
Found a future object: a

Found a future object: b

Found a future object: c

sk stk ok sk sk ok o ok sk sk sk sk ok sk sk sk ok sk sk sk ok sksk sk ok stk sk sk ok sk sksk sk ok sksk ok ok sksk ok sk ok ok

[11]: print("Results after stopping PyCOMPSs: ")
print("a: %d" % a)
print("b: %d" % b)
print("c: %d" % c)

Results after stopping PyCOMPSs:

a: 4
b: 8
c: 40

10.1.2 PyCOMPSs: Synchronization

In this example we will see how to synchronize with PyCOMPSs.

10.1.2.1 Import the PyCOMPSs library

[1]: import pycompss.interactive as ipycompss

10.1. Syntax 281

COMPSs Documentation, 2.9

10.1.2.2 Start the runtime

Initialize COMPSs runtime Parameters indicates if the execution will generate task graph, tracefile, monitor
interval and debug information.

[2]: import os
if 'BINDER_SERVICE_HOST' in os.environ:
ipycompss.start (graph=True, debug=False,
project_xml='../xml/project.xml',
resources_xml='../xml/resources.xml')
else:
ipycompss.start (graph=True, monitor=1000, trace=False)

ok ok ok ok ok ok sk ok sk ok s ok sk ok sk ok ok ok ok sk ok ok sk ok s ok sk ok sk ok ok sk ok ok sk ok s ok sk ok sk ok ok ok ok sk ok ok ok
skkkkkkkkokkokkkk PyCOMPSs Interactive skskskskskskskokskokkokkkkk
sk sk sk ok ok ok ook ok ok ok ok ok ok ok sk ok ok ook s ok ok ok ok ok ok sk ok skok ok s ok s ok ok ko sk ok skok ok ok sk ok ok ok

* Yo *
* :) 2
* T =N /.- 77 | [GRED B
* > . . < / ___/ ____ / *
x - -) 1l /] =
T Loy I TR VA
* (:) .- *
* g -~ - -~} *
* P ~ -~ ~ *
x A\ LT x
x Y x
x - e L\ =L/ x
* -~ e = *
* =T =)=/ *
* /o~ =7 - T-l *
* o< *
skok o oK oK ok oK oK ok o sk ok oK oK K oK o K oK o K oK ok K K ok K ok oK ok o K oK o K oK sk oK sk sk sk ok sk ok Kok
* - Starting COMPSs runtime... *
* - Log path : /home/javier/.COMPSs/InteractiveMode_02/
* - PyCOMPSs Runtime started... Have fun! *

3k >k 3K 3K 3K 3K 3K 3k 5k 5k 5k 5k 5k 5k 5k %k 3k 5K 5K 3k 3k 3k 5k 5k 5k 5k 5k %K K 3K 3K 5K 5k 3k %k 5k 5k 5k 5k %k % >k 3K 5k 5k % 5k %k %k >k >k k %k Xk

Importing task and parameter modules

Import task module before annotating functions or methods

[3]: from pycompss.api.task import task
from pycompss.api.parameter import *
from pycompss.api.api import compss_wait_on

282 Chapter 10. PyCOMPSs Notebooks

[4]:

[5]:

[6]:

[7]:

[8]:

[9]:

[10]:

[11]7:

[12]:

[13]:

[14]:

COMPSs Documentation,

2.9

10.1.2.3 Declaring tasks

Declare functions and decorate with @task those that should be tasks

Otask(returns=int)
def square(vall):
return vall * vall

Otask(returns=int)
def add(val2, val3):
return val2 + val3

Otask(returns=int)
def multiply(vall, val2):
return vall * val2

10.1.2.4 Invoking tasks

a = square(2)

Found task: square

b = add(a, 4)

Found task: add

¢ = multiply (b, 5)

Found task: multiply

Accessing data outside tasks requires synchronization

¢ = compss_wait_on(c)

print("a: %s" % a)
print("b: %s" % b)
print("c: %d" % c)

a: <pycompss.runtime.management.classes.Future object at 0x7£2340f4e040>
b: <pycompss.runtime.management.classes.Future object at 0x7£2315523a30>

c: 41

a = compss_wait_on(a)

print("a: %d" % a)
a: 4

10.1. Syntax

283

COMPSs Documentation, 2.9

10.1.2.5 Stop the runtime

[15]: ipycompss.stop(sync=True)

stk ok sk sk ok sk sk sk ek sk s ok sk sk ok sk sk sk ok sk ks ok sk sk ok sk sk ok sk sk sk ok ks ks
woksokkkkkokkkkkkk STOPPING PyCOMPSS okkokskokskkokkokkokkokkkok
stk ok sk ok sk stk kst kel kb sk ok sk sk sk stk stk stk sk ok sk sk ok sk sk ok sk stk ko
Checking if any issue happened.

Synchronizing all future objects left on the user scope.

Found a future object: b
sk sk o ok sk sk ok o ok sk sk sk o sk sk ok s ok sk sk sk sk ke ok sk sk sk ke ok sksk sk s ok sk sk sk ok ok sk ok ok sk sk ok ok ok

[16]: print("Results after stopping PyCOMPSs: ")
print("a: %d" % a)
print("b: %d" % b)
print("c: %d" % c)

Results after stopping PyCOMPSs:

a: 4
b: 8
c: 41

10.1.3 PyCOMPSs: Using objects, lists, and synchronization

In this example we will see how classes and objects can be used from PyCOMPSs, and that class methods can
become tasks.

10.1.3.1 Import the PyCOMPSs library

[1]: import pycompss.interactive as ipycompss

10.1.3.2 Start the runtime

Initialize COMPSs runtime Parameters indicates if the execution will generate task graph, tracefile, monitor
interval and debug information.

[2]: import os
if 'BINDER_SERVICE_HOST' in os.environ:
ipycompss.start(graph=True, debug=True,
project_xml='../xml/project.xml',
resources_xml='../xml/resources.xml')
else:
ipycompss.start(graph=True, monitor=1000, debug=True)

ok ok ok ok ok ok sk ok sk ok s ok sk ok sk ok ok ok ok sk ok ok ok s ok sk ok sk ok ok sk ok sk ok sk ok ok sk ok sk ok ok ok ok sk ok ok ok
skkkkkkkkokkokkkk PyCOMPSs Interactive sksksksksksksokskokkokkkkok
sk sk ok sk ok ook o ok ok ok ok ok ok sk ok ok sk ok s ok ok ok ok ok ok sk ok sk ok ok s ok ook ok ok ok sk ok skok ok ok sk ok k ok

" Yoo *
*) [\ /o= \ %
* ~ A\ /.- "7)| [GRD B
x>) ' < / ___/ \eem /[*
* (- -)R I D /7 *
o l_____ (I /__/ *
* () - - *
* - --" -7 =T} *

(continues on next page)

284 Chapter 10. PyCOMPSs Notebooks

[3]:

[4]:

COMPSs Documentation,

2.9

* Tt Uit W ~ -~ ~ *
* VA Nl T x
x AT/ x
x S e\ =L/ x
* it e et *
* =T =T /-7 *
* /" -~ - *
* o< *
sk sk ok sk sk o ok sk sk sk sk sk sk sk sk sk sk sk ok sksk sk ok sksk sk sk ok sk sk sk ok sksk ok ok skskok ok ok
* - Starting COMPSs runtime... *
* - Log path : /home/javier/.COMPSs/InteractiveMode_03/
* - PyCOMPSs Runtime started... Have fun! *

>k >k 3k 3K 3K 3k 3k 5k 5k 3k 3k 5k 5k 5k %k >k >k 5k 5k 5k 3k 3k %k %k >k >k %k %k >k >k 5k 5k 5k %k %k %k >k >k >k %k %k K >k >k >k %k %k %k %k >k >k %k % %

10.1.3.3 Importing task and arguments directionality modules

Import task module before annotating functions or methods

from pycompss.api.api import compss_barrier
from pycompss.api.api import compss_wait_on

10.1.3.4 Declaring a class

Jfwritefile my_shaper.py

from pycompss.api.task import task
from pycompss.api.parameter import IN

class Shape(object):
def __init__(self,x,y):
self.x = x
self.y =y

Otask(returns=int)
def area(self):
return self.x * self.y

Otask(returns=int)
def perimeter(self):
return 2 * self.x + 2 * self.y

def describe(self,text):
self .description = text

@task()

def scaleSize(self,scale):
self.x = self.x * scale
self.y = self.y * scale

Otask(target_direction=IN)
def infoShape(self):
print('Shape x=', self.x, 'y=

1

, self.y)

Overwriting my_shaper.py

(continued from previous page)

10.1. Syntax

285

[5]:

[6]:

[7]1:

[8]:

[9]:

[10]:

[117:

[12]:

[13]:

COMPSs Documentation, 2.9

10.1.3.5 Invoking tasks
from my_shaper import Shape

my_shapes = []
my_shapes . append (Shape (100,45))
my_shapes . append (Shape (50,50))

all_areas = []

for this_shape in my_shapes:
all_areas.append(this_shape.area())

Need 2t ©f we want to synchonize nested objects
all_areas = compss_wait_on(all_areas)
print(all_areas)

[4500, 2500]

rectangle = Shape(200,25)
rectangle.scaleSize(5)

area_rectangle = rectangle.area()

rectangle = compss_wait_on(rectangle)

print('X = 7%d' 7, rectangle.x)

area_rectangle = compss_wait_on(area_rectangle)
print('Area = Jd' 7, area_rectangle)

X = 1000
Area = 125000

all_perimeters=[]

my_shapes. append (rectangle)

for this_shape in my_shapes:
this_shape. infoShape ()
all_perimeters.append(this_shape.perimeter())

all_perimeters = compss_wait_on(all_perimeters)
print (all_perimeters)

[290, 200, 2250]

10.1.3.6 Stop the runtime

ipycompss.stop(sync=True)

sk ok sk sk sk sk sk sk sk sk o ok o s ok ok ook ok sk sk sk sk sk sk sk sk sk sk sk sk ok ok ke ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk ok ok ok
sokkkokkokkokkokkkkk STOPPING PyCOMPSS ok kskkskokskokkokkokkkokkok

sk sk stk ok ok ok oo o o o o ok ok ok ok ok sk sk sk sk sk sk sk oo o o o ke ok ok ok sk sk sk sksk sk sk sk ok o s ke ke k
Checking if any issue happened.

Synchronizing all future objects left on the user scope.
Found a list to synchronize: my_shapes

Found a list to synchronize: all_areas

Found a list to synchronize: all_perimeters

sk sk sk sk sk sk sk sk sk sk sk ok ok o o ok ok sk ok sk sk sk sk sk sk sk sk sk sk sk sk o o ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ke ke ok

286 Chapter 10.

PyCOMPSs Notebooks

[1]:

[2]:

COMPSs Documentation, 2.9

10.1.4 PyCOMPSs: Using objects, lists, and synchronization

In this example we will see how classes and objects can be used from PyCOMPSs, and that class methods can
become tasks.

10.1.4.1 Import the PyCOMPSs library

import pycompss.interactive as ipycompss

10.1.4.2 Start the runtime

Initialize COMPSs runtime Parameters indicates if the execution will generate task graph, tracefile, monitor
interval and debug information.

import os
if 'BINDER_SERVICE_HOST' in os.environ:
ipycompss.start(graph=True, debug=True,
project_xml='../xml/project.xml',
resources_xml='../xml/resources.xml')
else:
ipycompss.start (graph=True, monitor=1000, debug=True, trace=False)

okstok skokok ko ok ok kokok sk okok ook skokok sk ok skok kokok ok ok ok kokok skokok ok ook ok ok ok ok
skkkkkkkkokkokokkk PyCOMPSs Interactive sxskskskskksokskokokokkkkk
stk ok ok ok sk ok sk sk ok ok sk ok ok sk ok sk ok ok skook ok ok sk ok ok ok sk ok sk sk sk sk ok sk sk sk sk sk sk ok sk sk ok ook sk kok ok ok k

* T *
*) l____\ VAR
* - /o= =) [GRS
* > N ! < / ___/ ____ / *
*(- -)2 I P /ol *
L R T P (. /__/ *
* () .- *
* g -~ -~ -~} *
* BT U L= T *
x A\ LT x
* A\ /Y *
* - e \TN\=L *
* it A g *
* ST =T A& *
* /T =7 Yo7 *
* - .< *
sk sk s o o ok sk sk ok o sk sk ok o sk sk ok s ok sk sk ok sk e ok sk sk sk e ok sk sk sk e ok sk sk sk s ok sk ok ok ek sk sk ok ek ok
* - Starting COMPSs runtime... *
* - Log path : /home/javier/.COMPSs/InteractiveMode_04/
* - PyCOMPSs Runtime started... Have fun! *

3k 5k 3k 5k >k 3k >k 5k 5k 3k 5k %k 3K >k 3k 5k 5k 5k >k 5k >k 3k 5k 5k 5k >k 5k >k 5k >k 5k 5k >k 5k %k 5k 5k 5k 5k >k 5k >k 5k >k %k 5k %k >k %k >k k k k k

10.1. Syntax 287

COMPSs Documentation, 2.9

10.1.4.3 Importing task and arguments directionality modules

Import task module before annotating functions or methods

[3]: from pycompss.api.api import compss_barrier
from pycompss.api.api import compss_wait_on
from pycompss.api.task import task

10.1.4.4 Declaring a class

[4]: Y%writefile my_shaper.py

from pycompss.api.task import task
from pycompss.api.parameter import IN

class Shape(object):
def __init__(self,x,y):
self.x = x
self.y =y
description = "This shape has not been described yet"

Otask(returns=int)
def area(self):
return self.x * self.y

Otask(returns=int)
def perimeter(self):
return 2 * self.x + 2 * self.y

def describe(self,text):
self.description = text

@task()

def scaleSize(self,scale):
self.x = self.x * scale
self.y = self.y * scale

Otask(target_direction=IN)
def infoShape(self):
print('Shape x=', self.x, 'y= ', self.y)

Overwriting my_shaper.py

[5]: @task(returns=int)
def addAll (*mylist):
sum = 0
for 11 in mylist:
sum = sum + 11
return sum

288 Chapter 10. PyCOMPSs Notebooks

[6]:

[7]:

[8]:

[9]:

[10]:

[11]:

[12]:

[13]:

[14]:

COMPSs Documentation,

2.9

10.1.4.5 Invoking tasks
from my_shaper import Shape

my_shapes = []

my_shapes . append (Shape (100,45))
my_shapes . append (Shape (50,50))
my_shapes . append (Shape (10,100))
my_shapes . append (Shape (20, 30))

all_areas = []

for this_shape in my_shapes:

all_areas.append(this_shape.area())

Need 2t ©f we want to synchonize nested objects
all_areas = compss_wait_on(all_areas)

print (all_areas)

[4500, 2500, 1000, 600]

rectangle = Shape(200,25)
rectangle.scaleSize(5)

area_rectangle = rectangle.area()

rectangle = compss_wait_on(rectangle)

print('X = %d' ’ rectangle.x)

area_rectangle = compss_wait_on(area_rectangle)
print('Area = Jd' 7 area_rectangle)

X = 1000
Area = 125000

all_perimeters=[]

my_shapes . append (rectangle)

for this_shape in my_shapes:
this_shape. infoShape ()

all_perimeters.append(this_shape.perimeter())

all_perimeters = compss_watt_on(all_perimeters)

print all_perimeters

mysum = addAll(*all_perimeters)
mysum = compss_wait_on(mysum)

print (mysum)

Task definition detected.
Found task: addAll
3060

10.1. Syntax

289

COMPSs Documentation, 2.9

10.1.4.6 Stop the runtime

[15]: ipycompss.stop(sync=True)

stk sk sk sk sk sk sk sk sk sk ok o o o ok ok ok ok ok sk sk sk sk sksksk sk sk sk sk o ok ok sk sk ok ok sk sk sk sk sk sk sk sk sk sk sk ok ok ok ok
sokkkkkokkokkokkkkkx STOPPING PyCOMPSS ok skskkskoksokkokkokkkok ok

sk ok sk sk sk sk sk ok ok o o o s ok ok ok ook ok sk sk sk sk sk sk sk sk s sk sk sk ok ok ok ok ok ok sk sk sk sk sk sk sk sk ok sk sk sk ok ok ke ok
Checking if any issue happened.

Synchronizing all future objects left on the user scope.
Found a list to synchronize: my_shapes

Found a list to synchronize: all_areas

Found a list to synchronize: all_perimeters

sk ok sk sk sk ook ok ok o oo o o o ok ok ook ok sk sk sk sk sk sk sk sk oo o s sk ok ok ok ok ok sk sk sk sk sk sk sk sk ok o s sk ke ok

10.1.5 PyCOMPSs: Using objects, lists, and synchronization. Using collections.

In this example we will see how classes and objects can be used from PyCOMPSs, and that class methods can
become tasks. The example also illustrates the use of collections

10.1.5.1 Import the PyCOMPSs library

[1]: import pycompss.interactive as ipycompss

10.1.5.2 Start the runtime

Initialize COMPSs runtime Parameters indicates if the execution will generate task graph, tracefile, monitor
interval and debug information.

[2]: import os
if 'BINDER_SERVICE_HOST' in os.environ:
ipycompss.start(graph=True, debug=True,
project_xml='../xml/project.xml’',
resources_xml='../xml/resources.xml')
else:
ipycompss.start (graph=True, monitor=1000, debug=True, trace=False)

sk kK 3K oK oK oK oK oK ok ok oK oK o o K K K oK oK oK oK oK oK ok ok ok ok ok o o K kK oK ok ok ok ok ok ok ok ok ok ok o o kK
*okkkkkkkkkkkkkk PyCOMPSs Interactive sxkskkkkkskkskkskkkkok
sk sk sk sk sk sk sk sk ok ok ok ok ok o o ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk s ok o ok sk sk sk sk sk sk sk sk sk sk sk ok sk sk ok ok ok ok

* XK X X X X X X X X X X X X * X
R
|
|
)
|
|
13
-
1 .
R
|
R
R
* O X X X X X X X X X X X ¥ ¥ *

(continues on next page)

290 Chapter 10. PyCOMPSs Notebooks

[3]:

[4]:

COMPSs Documentation, 2.9

>k >k 3K 3K 3K 3K 3k 3k 5k 3k 3k 5k 5k 5k %k %k 5k 3K 3k 3k 3k 3k %k 5k 5k 5k %k % K 3K 3K 3K 5k 3k %k %k 5k >k >k %k % %K 3K 3k 5k 5k %k %k %k %k >k k% %

* - Starting COMPSs runtime... *
* - Log path : /home/javier/.COMPSs/InteractiveMode_05/
* - PyCOMPSs Runtime started... Have fun! *

3k 3k 3k 3k ok >k 3k Sk 5k sk >k >k >k 3k 3k ok >k >k 3k 3k Sk 5k ok %k 3k Sk ok 3k >k %k >k k 3k 5k >k %k >k 3k 3k 5k >k %k %k 3k ok >k >k %k %k Sk ok ok k k

10.1.5.3 Importing task and arguments directionality modules

Import task module before annotating functions or methods

from pycompss.api.api import compss_barrier
from pycompss.api.api import compss_wait_on
from pycompss.api.task import task

from pycompss.api.parameter import *

10.1.5.4 Declaring a class

Jhwritefile my_shaper.py

from pycompss.api.task import task
from pycompss.api.parameter import IN

class Shape(object):
def __init__(self,x,y):
self.x = x
self.y =y
description = "This shape has not been described yet"

Otask(returns=int, target_direction=IN)
def area(self):

import time

time.sleep(4)

return self.x * self.y

@task()

def scaleSize(self,scale):
import time
time.sleep(4)
self.x = self.x * scale
self.y = self.y * scale

Otask(returns=int, target_direction=IN)
def perimeter(self):

import time

time.sleep(4)

return 2 * self.x + 2 * self.y

def describe(self,text):
self .description = text

Otask(target_direction=IN)
def infoShape(self):
import time

(continued from previous page)

(continues on next page)

10.1. Syntax

291

COMPSs Documentation, 2.9

(continued from previous page)

time.sleep(1)
print ('Shape x=', self.x, 'y= ', self.y)

Overwriting my_shaper.py

[5]: #0Operations with collections: previous to release 2.5
Otask(returns=1)
def addAll (*mylist):
import time
time.sleep(1)
sum = 0
for 11 in mylist:
sum = sum + 11
return sum

[6]: @task(returns=int, mylist=COLLECTION_IN)
def addAll_C(mylist):
import time
time.sleep(4)
sum = 0
for 11 in mylist:
sum = sum + 11
return sum

[7]: @task(returns=2, mylist=COLLECTION_IN, my_otherlist=COLLECTION_IN)
def addAll_C2(mylist, my_otherlist):
import time
time.sleep(4)
sum = 0
sum2 = 0
for 11 in mylist:
sum = sum + 11
for jj in my_otherlist:
sum2 = sum2 + jj
return sum, sum2

[8]: Otask(mylist=COLLECTION_INOUT)
def scale_all(mylist, scale):
import time
time.sleep(4)
for 11 in mylist:
11.x = 11.x * scale
11.y = 11.y * scale

10.1.5.5 Invoking tasks
[9]: from my_shaper import Shape

[10]: my_shapes = []
my_shapes . append (Shape (100,45))
my_shapes . append (Shape (50,50))
my_shapes . append (Shape (10,100))
my_shapes . append (Shape (20,30))

292 Chapter 10. PyCOMPSs Notebooks

[117:

[12]:

[13]:

[14]:

[15]:

[16]:

[177:

[18]:

COMPSs Documentation,

2.9

all_areas = []

for this_shape in my_shapes:
all_areas.append(this_shape.area())

10.1.5.6 Synchronizing results from tasks

all_areas = compss_wait_on(all_areas)
print(all_areas)

[4500, 2500, 1000, 600]

rectangle = Shape(200,25)
rectangle.scaleSize(5)

area_rectangle = rectangle.area()
rectangle = compss_wait_on(rectangle)
print('X =', rectangle.x)

area_rectangle = compss_wait_on(area_rectangle)

print('Area =', area_rectangle)

X = 1000
Area = 125000

10.1.5.7 Accessing data in collections

all_perimeters = []
my_shapes . append (rectangle)
for this_shape in my_shapes:

all_perimeters.append(this_shape.perimeter())

mysum = addAll_C(all_perimeters)
mysum = compss_wait_on(mysum)
print (mysum)

Task definition detected.
Found task: addAll_C
3060

Previous wversion without collections
mysum = addAll(*all_perimeters)

mysum = compss_wait_on(mysum)

print (mysum)

10.1.5.8 Accessing two collections

all_perimeters = []
all_areas = []
for this_shape in my_shapes:

all_perimeters.append(this_shape.perimeter())

all_areas.append(this_shape.area())

10.1. Syntax

293

[19]:

[20]:

[21]:

[1]:

COMPSs Documentation, 2.9

[my_per, my_area] = addAl11_C2(all_perimeters, all_areas)
[my_per, my_area] = compss_wait_on([my_per, my_areal)
print ([my_per, my_area])

Task definition detected.
Found task: addAll_C2
[3060, 133600]

10.1.5.9 Scattering data from a collection

scale_all (my_shapes,2)

scaled_areas=[]

for this_shape in my_shapes:
scaled_areas.append(this_shape.area())

scaled_areas = compss_wait_on(scaled_areas)
print(scaled_areas)

Task definition detected.
Found task: scale_all
[18000, 10000, 4000, 2400, 500000]

10.1.5.10 Stop the runtime

ipycompss.stop(sync=True)

sk ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok s sk ok ok sk sk ok sk sk ok ok sk ko sk sk ok o ok ok sk ok okok ok okok sk ok ok
sokkkskskkkokkokkkk STOPPING PyCOMPSs okskskskskskskskskoskokokokok ok ok ok
ke sk ok ok sk ok ok s ok ok sk ok ok ok s ok ok sk ok ok sk sk sk ok sk ok ok sk sk ok sk sk sk ok sk sk ok sk sk ok ok s ok ok sk sk ok sk sk ok ok sk ok ok

Checking if any issue happened.

Synchronizing all future objects left on the user scope.

Found a list to synchronize: my_shapes

Found a list to synchronize: all_areas

Found a list to synchronize: all_perimeters

Found a list to synchronize: scaled_areas

sk ok skokok o ok sk ok o sk sk ok o ok sk ok ok sk ok ok stk ok ok sk sk ok ok skok ok ok skokok ok ok

10.1.6 PyCOMPSs: Using objects, lists, and synchronization. Using dictionary.

In this example we will see how classes and objects can be used from PyCOMPSs, and that class methods can

become tasks. The example also illustrates the use of dictionary

10.1.6.1 Import the PyCOMPSs library

import pycompss.interactive as ipycompss

294

Chapter 10. PyCOMPSs Notebooks

COMPSs Documentation, 2.9

10.1.6.2 Start the runtime

Initialize COMPSs runtime Parameters indicates if the execution will generate task graph, tracefile, monitor
interval and debug information.

[2]: import os
if 'BINDER_SERVICE_HOST' in os.environ:
ipycompss.start (graph=True, debug=True,
project_xml='../xml/project.xml',
resources_xml='../xml/resources.xml')
else:
ipycompss.start(graph=True, monitor=1000, debug=True, trace=False)

ok ok ok ok ok ok sk ok sk ok s ok sk ok sk ok ok ok ok sk ok ok sk ok s ok sk ok sk ok ok sk ok ok sk ok s ok sk ok sk ok ok ok ok sk ok ok ok
skkkkkkkkokkokkkk PyCOMPSs Interactive skskskskskskskokskokkokkkkk
sk sk sk ok ok ok ook ok ok ok ok ok ok ok sk ok ok ook s ok ok ok ok ok ok sk ok skok ok s ok s ok ok ko sk ok skok ok ok sk ok ok ok

* Yo *
* :) 2
* T =N /.- 77 | [GRED B
* > . . < / ___/ ____ / *
x - -) 1l /] =
T Loy I TR VA
* (:) .- *
* g -~ - -~} *
* P ~ -~ ~ *
x A\ LT x
x Y x
x - e L\ =L/ x
* -~ e = *
* =T =)=/ *
* /o~ =7 - T-l *
* o< *
skok o oK oK ok oK oK ok o sk ok oK oK K oK o K oK o K oK ok K K ok K ok oK ok o K oK o K oK sk oK sk sk sk ok sk ok Kok
* - Starting COMPSs runtime... *
* - Log path : /home/javier/.COMPSs/InteractiveMode_06/
* - PyCOMPSs Runtime started... Have fun! *

3k >k 3K 3K 3K 3K 3K 3k 5k 5k 5k 5k 5k 5k 5k %k 3k 5K 5K 3k 3k 3k 5k 5k 5k 5k 5k %K K 3K 3K 5K 5k 3k %k 5k 5k 5k 5k %k % >k 3K 5k 5k % 5k %k %k >k >k k %k Xk

10.1.6.3 Importing task and arguments directionality modules

Import task module before annotating functions or methods

[3]: from pycompss.api.api import compss_barrier
from pycompss.api.api import compss_wait_on
from pycompss.api.task import task
from pycompss.api.parameter import *

10.1. Syntax 295

[4]:

[5]:

[6]:

COMPSs Documentation, 2.9

10.1.6.4 Declaring a class

hwritefile my_shaper.py

from pycompss.api.task import task
from pycompss.api.parameter import IN

class Shape(object):

def __init__(self,x,y):
self.x = x
self.y =y
description = "This shape has not been described yet"

Otask(returns=int, target_direction=IN)
def area(self):

import time

time.sleep(4)

return self.x * self.y

@task()

def scaleSize(self,scale):
import time
time.sleep(4)
self.x = self.x * scale
self.y = self.y * scale

Otask(returns=int, target_direction=IN)
def perimeter(self):

import time

time.sleep(4)

return 2 * self.x + 2 * self.y

def describe(self,text):
self .description = text

Otask(target_direction=IN)
def infoShape(self):
import time
time.sleep(1)
print('Shape x=', self.x, 'y=

, self.y)

Overwriting my_shaper.py

Otask(returns=int, mydict = DICTIONARY_IN)
def addAll(mydict):

import time

time.sleep(4)

sum = 0

for key, value in mydict.items():
sum = sum + value

return sum

Otask(returns=2, mydict=DICTIONARY_IN, my_otherdict=DICTIONARY_IN)
def addAll_2(mydict, my_otherdict):

import time
time.sleep(4)
sum = 0

(continues on next page)

Chapter 10.

PyCOMPSs Notebooks

COMPSs Documentation, 2.9

(continued from previous page)
sum2 = 0
for key, value in mydict.items():
sum = sum + value
for key2, value2 in my_otherdict.items():
sum2 = sum2 + value2
return sum, sum2

[7]: @task(mydict=DICTIONARY_INOUT)
def scale_all(mydict, scale):
import time
time.sleep(4)
for key, value in mydict.items():
mydict[key] .x = value.x * scale
mydict [key] .y = value.y * scale

10.1.6.5 Invoking tasks
[8]: from my_shaper import Shape

[9]: my_shapes = {}
my_shapes["rectangle"] = Shape(100,45)
my_shapes ["square"] = Shape(50,50)
my_shapes["long_rectangle"] = Shape(10,100)
my_shapes["small_rectangle"] = Shape(20,30)

[10]: all_areas = {}

[11]: for key, value in my_shapes.items():
all_areas[key] = value.area()

10.1.6.6 Synchronizing results from tasks

[12]: all_areas = compss_wait_on(all_areas)
print(all_areas)

{'rectangle': 4500, 'square': 2500, 'long_rectangle': 1000, 'small_rectangle': 600}

[13]: rectangle = Shape(200,25)
rectangle.scaleSize(5)
area_rectangle = rectangle.area()
rectangle = compss_wait_on(rectangle)

print('X =', rectangle.x)

area_rectangle = compss_wait_on(area_rectangle)
print('Area =', area_rectangle)

X = 1000

Area = 125000

10.1. Syntax 297

[14]:

[15]:

[16]:

[17]:

[18]:

COMPSs Documentation, 2.9

10.1.6.7 Accessing data in collections

all_perimeters = {}

my_shapes["new_shape"] = rectangle

for key, value in my_shapes.items():
all_perimeters[key] = value.perimeter ()

mysum = addAll(all_perimeters)
mysum = compss_wait_on(mysum)
print (mysum)

Task definition detected.
Found task: addAll
3060

10.1.6.8 Accessing two collections

all_perimeters = {}

all_areas = {}

for key, value in my_shapes.items():
all_perimeters[key] = value.perimeter()
all_areas[key] = value.area()

[my_per, my_area]
[my_per, my_area] = compss_wait_on([my_per, my_area])
print ([my_per, my_areal)

Task definition detected.
Found task: addAll_2
[3060, 133600]

10.1.6.9 Scattering data from a collection

scale_all (my_shapes, 2)

scaled_areas = {}

for key, value in my_shapes.items():
scaled_areas[key] = value.area()

scaled_areas = compss_wait_on(scaled_areas)
print(scaled_areas)

Task definition detected.
Found task: scale_all

{'rectangle': 18000, 'square': 10000, 'long_rectangle':

—shape': 500000}

addAl11_2(all_perimeters, all_areas)

4000, 'small_rectangle': 2400, 'new_

298

Chapter 10. PyCOMPSs Notebooks

[19]:

[1]:

[2]:

COMPSs Documentation, 2.9

10.1.6.10 Stop the runtime

ipycompss.stop(sync=True)

sk sk s o o ok sk sk ok e sk sk ok o sk sk ok s ok sk ok sk e ok sk sk sk e ok sk sk sk e sk sk ok o ok sk sk ok e sk sk sk ok ek ok
woksokkckkkkkkkkkk STOPPING PyCOMPSS okkokskokskokokkokkokkokkokok
sk sk o ok sk sk ok o ok sk sk sk o ok sk sk ok sk ok sk sk sk sk ke ok sk sk sk ok sksk sk s ok sk sk sk ok ok sk ok ok sk sk ok ok ok
Checking if any issue happened.

Synchronizing all future objects left on the user scope.
stk ke ok sk s ok sk ok sk sk sk sk sk sk sk sk s ok sk sk sk sk sk sk sk sk sk sk e ok sk sk ok sk sk ok sk sk sk sk sk sk ok

10.1.7 PyCOMPSs: Using objects, lists, and synchronization. Managing fault-
tolerance.

In this example we will see how classes and objects can be used from PyCOMPSs, and that class methods can
become tasks. The example also illustrates the current fault-tolerance management provided by the runtime.

10.1.7.1 Import the PyCOMPSs library

import pycompss.interactive as ipycompss

10.1.7.2 Start the runtime

Initialize COMPSs runtime Parameters indicates if the execution will generate task graph, tracefile, monitor
interval and debug information.

import os
if 'BINDER_SERVICE_HOST' in os.environ:
ipycompss.start(graph=True, debug=False,
project_xml='../xml/project.xml',
resources_xml='../xml/resources.xml')
else:
ipycompss.start(graph=True, monitor=1000, trace=False, debug=False)

sk ok ok ok ok ok ok sk ok ok sk sk ok ok ok ok sk ok ok ok sk ok ok sk sk ok ok sk ok ok sk ok ok sk sk ok ok sk ok ok sk ok ok sk ok ok ok ok okok sk ok ok
$okkkkkkkkokkokkkk PyCOMPSs Interactive sksksksksksksokskokskokkkkok
ke sk ok ok sk ok ok sk ok ok sk ok ok ok sk ok ok sk ok ok sk sk sk ok sk ok ok sk sk ok sk sk sk ok sk sk ok sk sk sk ok s sk ok sk sk ok sk sk ok ok sk ok ok

A Joo O

AR N\ ' =T
AR //
T S Y
= R St
=T = /o=
Jo - S
“-.<
stk sk sk sk sk ok sk sk ok ok ok o o o o o ok ok ok sk sk sk sk sk sk sk sk ok ok ok o o o ok ok ok sk sk sk sk sk sk sk ok ok ok ok ok ok o ok

* X X X X K X X X X K X X * X *
]
1
1
I
1
13
1
14
1
. P
—
* X X X X XK X X X X X ¥ X ¥ * ¥

(continues on next page)

10.1. Syntax 299

COMPSs Documentation, 2.9

(continued from previous page)

* - Starting COMPSs runtime... *
* - Log path : /home/javier/.COMPSs/InteractiveMode_07/
* - PyCOMPSs Runtime started... Have fun! *

>k >k >k 3k 5k ok ok ok 5k 5k %k %k >k %k >k >k >k >k 5k 5k 5k 5k >k >k %k %k %k >k >k >k 5k 5k 5k 5k %k %k >k %k >k %k >k >k >k >k >k >k %k >k >k >k >k k %k %

10.1.7.3 Importing task and arguments directionality modules

Import task module before annotating functions or methods

[3]: from pycompss.api.api import compss_barrier
from pycompss.api.api import compss_wait_on
from pycompss.api.task import task
from pycompss.api.parameter import *

10.1.7.4 Declaring a class

[4]: YJwritefile my_shaper.py

from pycompss.api.task import task
from pycompss.api.parameter import IN
import sys

class Shape(object):
def __init__(self,x,y):
self.x = x
self.y =y
description = "This shape has not been described yet"

Otask(returns=int, target_direction=IN)
def area(self):
return self.x * self.y

@task()

def scaleSize(self,scale):
self.x = self.x * scale
self.y = self.y * scale

on_farlure= 'IGNORE', on_failure= 'RETRY', on_failure= 'FAIL', 'CANCEL_SUCCESSORS'
@task(on_failure= 'CANCEL_SUCCESSORS')
def downScale(self,scale):
if (scale <= 0):
sys.exit (1)
else:
self.x = self.x/scale
self.y = self.y/scale

Otask(returns=int, target_direction=IN)
def perimeter(self):
return 2 * self.x + 2 * self.y

def describe(self,text):
self.description = text

(continues on next page)

300 Chapter 10. PyCOMPSs Notebooks

[5]:

[6]:

[7]:

[8]:

[9]:

[10]:

COMPSs Documentation, 2.9

Otask(target_direction=IN)
def infoShape(self):
print('Shape x=', self.x, 'y= ', self.y)

Overwriting my_shaper.py

10.1.7.5 Invoking tasks
from my_shaper import Shape

my_shapes = []

my_shapes . append (Shape (100,45))
my_shapes . append (Shape (50,50))
my_shapes . append (Shape (10,100))
my_shapes . append (Shape (20,30))
my_shapes . append (Shape (200,25))

all_perimeters = []

i=4

for this_shape in my_shapes:
this_shape.scaleSize(2)
this_shape.area()
i=1i-1
this_shape.downScale (i)
all_perimeters.append(this_shape.perimeter())

10.1.7.6 Synchronizing results from tasks

all_perimeters = compss_wait_on(all_perimeters)
print all_perimeters

10.1.7.7 Stop the runtime

ipycompss.stop(sync=False)

stk ok sk sk kb sk sk sk sk s ok sk sk ok sk sk sk ok sk sk ks sk sk sk ok sk sk ok sk sk sk sk sk sk sk sk
woksckkkkkokkkkokkk STOPPING PyCOMPSS okskokskokskkokkokkokkokkokok
stk ok sk ok sk stk kst ke stk s kb ok sk sk ok sk stk stk stk sk ok sk sk ok sk sk sk stk ko
Checking if any issue happened.

(continued from previous page)

[ERRMGR] - WARNING: Job 15, running Task 15 on worker localhost, has failed.

[ERRMGR] - WARNING: Notifying task 15 failure

[ERRMGR] - WARNING: Task 'my_shaper.Shape.downScale' TOTALLY FAILED.

[ERRMGR] - WARNING: Task 16(Action: 16) with name my_shaper.Shape.perimeter has been
—cancelled.

[ERRMGR] - WARNING: Task failed: [[Task id: 15], [Status: FAILED], [Core id: 2], [Priority:

—false], [NumNodes: 1], [MustReplicate: false], [MustDistribute: false], [my_shaper.Shape.

—.downScale(INT_T)]]

[ERRMGR] - WARNING: Task canceled: [[Task id: 16], [Status: CANCELED], [Core id: 3],
— [Priority: false], [NumNodes: 1], [MustReplicate: false], [MustDistribute: false], [my_

—shaper. Shape.perimeter ()]]

(continues on next page)

10.1. Syntax

301

COMPSs Documentation, 2.9

(continued from previous page)

[ERRMGR] - WARNING: Job 18, running Task 19 on worker localhost, has failed.

[ERRMGR] - WARNING: Notifying task 19 failure

[ERRMGR] - WARNING: Task 'my_shaper.Shape.downScale' TOTALLY FAILED.

[ERRMGR] - WARNING: Task 20(Action: 20) with name my_shaper.Shape.perimeter has been,,
—cancelled.

[ERRMGR] - WARNING: Task failed: [[Task id: 19], [Status: FAILED], [Core id: 2], [Priority:

—false], [NumNodes: 1], [MustReplicate: false], [MustDistribute: false], [my_shaper.Shape.
—downScale(INT_T)]]

[ERRMGR] - WARNING: Task canceled: [[Task id: 20], [Status: CANCELED], [Core id: 31,

— [Priority: falsel, [NumNodes: 1], [MustReplicate: false], [MustDistribute: falsel, [my_
—shaper.Shape.perimeter()]]

Warning: some of the variables used with PyCOMPSs may
have not been brought to the master.
skt ok sk ok o stk ok ok e skok ok o ok sk sk ok stk ok ok stk ok ok skskok ok ok sk o ok sk ok ok ok

10.1.8 PyCOMPSs: Using files

In this example we will how files can be used with PyCOMPSs.

10.1.8.1 Import the PyCOMPSs library

[1]: import pycompss.interactive as ipycompss

10.1.8.2 Start the runtime

Initialize COMPSs runtime Parameters indicates if the execution will generate task graph, tracefile, monitor
interval and debug information.

[2]: import os
if 'BINDER_SERVICE_HOST' in os.environ:
ipycompss.start(graph=True, debug=False,
project_xml='../xml/project.xml',
resources_xml='../xml/resources.xml')
else:
ipycompss.start (graph=True, monitor=1000, trace=False, debug=False)

sk sk sk sk sk sk sk sk ok ok ok ok o o o o ok sk sk sk sk sk sk sk sk sk sk sk sk sk s s ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok ok ok
wokxkkkkkkkkkkkk PyCOMPSs Interactive sxkskkskskkkkskkkxok
KKK 3K 3K oK oK oK oK oK ok oK oK o o o o K K K KoK oK oK oK oK ok ok ok ok ok o o o K K K K K oK oK ok ok ok ok ok ok ok ok ok o K K

* Y- *
*) l____\ /o O\
* T - /.- T) [)| =
* > N ! < / ___/ ____ / %
* - -)R I D VARVARR
L l_____ [l /__/ *
* (:) o .- *
* T : == P ¢ *
* B A =T T *
* VA \ - *
* AL/ *
* T SRV *
* -~ e *
* =T =7 AT *

(continues on next page)

302 Chapter 10. PyCOMPSs Notebooks

COMPSs Documentation, 2.9

(continued from previous page)

* /T~ .- T RETREI *
* T-.< *
sk sk ok sk sk o ok sk sk ok ok sk sk sk sk ok ok sk sk sk ok ok sk sk sk ok ok sksk sk sk ok sk sk sk ok sksk ok ok skskok ok ok
* - Starting COMPSs runtime... *
* - Log path : /home/javier/.COMPSs/InteractiveMode_08/
* - PyCOMPSs Runtime started... Have fun! *

>k >k >k 3K 3K 3k 3k 5k 5k 3k 3k 5k 5k 5k %k >k >k 3k 3k 3k 3k 3k %k %k >k %k %k % >k >k 3k 5k 5k 5k 3k %k %k >k >k %k % %K 3K 3k >k 5k %k %k %k %k >k k% %

10.1.8.3 Importing task and parameter modules

Import task module before annotating functions or methods

[3]: from pycompss.api.task import task
from pycompss.api.parameter import FILE_IN, FILE_OUT, FILE_INOUT
from pycompss.api.api import compss_wait_on, compss_open

10.1.8.4 Declaring tasks

Declare functions and decorate with @task those that should be tasks

[4]: @task(fout=FILE_0OUT)
def write(fout, content):
with open(fout, 'w') as fout_d:
fout_d.write(content)

[5]: @task(finout=FILE_INOUT)
def append(finout):
finout_d = open(finout, 'a')
finout_d.write("\n===> INOUT FILE ADDED CONTENT")
finout_d.close()

[6]: @task(fin=FILE_IN, returns=str)
def readFile(fin):
fin d = open(fin, 'r')
content = fin_d.read()
fin_d.close()
return content

10.1.8.5 Invoking tasks

[7]: £ = "myFile.txt"
content = "OUT FILE CONTENT"
write(f, content)

Found task: write

[8]: append(f)

Found task: append

[9]: readed = readFile(f)

10.1. Syntax 303

COMPSs Documentation, 2.9

Found task: readFile

[10]: append(f)

Accessing data outside tasks requires synchronization

[11]: readed = compss_wait_on(readed)
print (readed)

0UT FILE CONTENT
===> INOUT FILE ADDED CONTENT

[12]: with compss_open(f) as fd:
f_content = fd.read()
print (f_content)

OUT FILE CONTENT
===> INOUT FILE ADDED CONTENT
===> INOUT FILE ADDED CONTENT

10.1.8.6 Stop the runtime

[13]: ipycompss.stop(sync=True)

sk sk s o o ok sk sk ok o sk sk ok o sk sk ok s ok sk sk ok sk o sk sk ok sk e ok sk sk sk e sk sk ok s ok sk ok ok sk sk sk ok ek ok
wokxokkckkkokkkkokkk STOPPING PyCOMPSS okkokskokskokokkokkokkokkokok
sk sk o ok ok sk sk ok o ok sk sk sk o ok sk sk ok sk ok sk sk sk ok sk sk sk ke ok sk sk sk s ok sk sk sk sk ok ok sk sk ok ok sk sk ok ok ok
Checking if any issue happened.

Synchronizing all future objects left on the user scope.
stk ke ok sk s ok sk o ok sk sk sk sk sk sk e sk sk e ok sk sk ok sk sk sk sk sk sk sk sk e ok sk s ok sk sk sk sk sk sk sk sk

10.1.9 PyCOMPSs: Using constraints

In this example we will how to define task constraints with PyCOMPSs.

10.1.9.1 Import the PyCOMPSs library

[1]: import pycompss.interactive as ipycompss

10.1.9.2 Starting runtime

Initialize COMPSs runtime Parameters indicates if the execution will generate task graph, tracefile, monitor
interval and debug information.

[2]: import os
if 'BINDER_SERVICE_HOST' in os.environ:
ipycompss.start (graph=True, debug=False,
project_xml='../xml/project.xml',
resources_xml='../xml/resources.xml')
else:
ipycompss.start (graph=True, monitor=1000, trace=True, debug=False)

304 Chapter 10. PyCOMPSs Notebooks

[3]:

[4]:

[5]:

[6]:

COMPSs Documentation, 2.9

KoK oK oK ok K oK ok K oK ok o KoK K oK oK oK o K oK ok K oK ok Kok o Kok K oK o oK oK ok K ok ok K ok ok Kok Kok
*kkkkkkkkokkokkkk PyCOMPSs Interactive sxskskskskskokskokokokkkkk
3k 5k 3k 5k >k 3k >k 3k 5k 3k 5k %k 5K >k 3k 5k 3k 5k >k 5k >k 3k 5k 3k 5k >k 5k >k 3k >k 5k 5k >k 5k >k 3k >k 3k 5k %k 5k >k >k >k %k >k %k >k %k >k k k k k
* ST *
*) l____\ /o *
* T - /.- 77)| [G *
* > ; ! < / ___/ N __ *
x - - > Il /o x
* T - 2T T T l_____ I_1 /__/ *
* () - .- *
* g -~ -~} *
* T =T =T\l =T ~ *
* N A *
* AL/ *
* T S /4 *
* -~ I Sl *
* =T =T A& *
* /_~_ _ .- o T *
* ~-.< *
oK oK ok o KoK ok KKK KoK K oK K oK K oK ok KK ok KK KK KoK K oKk K Kok K ok Kok Kok
* - Starting COMPSs runtime... *
* - Log path : /home/javier/.COMPSs/InteractiveMode_09/
* - PyCOMPSs Runtime started... Have fun! *
3k 5k 3k 5k >k 3k >k 5k 5k 3k 5k >k 3k >k 3k 5k 5k 5k >k 5k >k 5k 5k 5k 5k >k 5k >k 3k >k 5k 5k >k 5k %k 5k >k 5k 5k >k 5k >k 5k >k %k 5k %k >k %k >k k k k k
10.1.9.3 Importing task and arguments directionality modules
Import task module before annotating functions or methods
from pycompss.api.task import task
from pycompss.api.parameter import *
from pycompss.api.api import compss_barrier
from pycompss.api.constraint import constraint
from pycompss.api.implement import implement
10.1.9.4 Declaring tasks
Declare functions and decorate with Qtask those that should be tasks
Q@constraint (computing_units="2")
O@task(returns=int)
def square(vall):

return vall * vall
Qconstraint (computing_units="1")
Otask(returns=int)
def add(val2, val3):

return val2 + val3
Qconstraint (computing_units="4")
Otask(returns=int)
def multiply(vall, val2):

return vall * val2
10.1. Syntax 305

COMPSs Documentation, 2.9

10.1.9.5 Invoking tasks

[7]: for i in range(20):
rl = square(i)
r2 = add(rl,i)
r3 = multiply(r2,r1l)

compss_barrier()

Found task: square
Found task: add
Found task: multiply

10.1.9.6 Stop the runtime

[8]: ipycompss.stop(sync=True)

stk ke ok sk ok sk ok ok sk sk sk sk sk sk sk sk s ok sk sk sk sk sk sk sk sk sk sk ok sk sk ok sk sk sk sk sk sk sk sk
wokokkckkkokkkkkkk STOPPING PyCOMPSS okkokskokskokokkokkokkokkokok
stk ok sk sk ok sk stk kst ks s ok sk sk ok sk sk sk sk sk s ksl sk ok sk sk ok sk sk sk ok sk ks
Checking if any issue happened.

Synchronizing all future objects left on the user scope.
Found a future object: ril

Found a future object: r2

Found a future object: r3
sk sk o ok sk sk ok o ok sk sk ok o ok sk sk sk sk ok sk sk sk ke ok sk sk sk ok sksk sk s ok sk sk sk ok sk sk ok sksk ok ok ok

[9]: print(xrl)
print (r2)
print (r3)

361
380
137180

10.1.10 PyCOMPSs: Polymorphism

In this example we will how to use polimorphism with PyCOMPSs.

10.1.10.1 Import the PyCOMPSs library

[1]: import pycompss.interactive as ipycompss

10.1.10.2 Start the runtime

Initialize COMPSs runtime Parameters indicates if the execution will generate task graph, tracefile, monitor
interval and debug information.

[2]: import os
if 'BINDER_SERVICE_HOST' in os.environ:
ipycompss.start(graph=True, debug=False,
project_xml='../xml/project.xml’',
resources_xml='../xml/resources.xml')

(continues on next page)

306 Chapter 10. PyCOMPSs Notebooks

COMPSs Documentation, 2.9

(continued from previous page)

else:
ipycompss.start (graph=True, monitor=1000, trace=False, debug=False)

KKK KoK oK oK oK oK oK ok oK oK o o o K K K KK oK oK oK oK oK oK ok ok ok ok o o K K K K K oK oK ok ok ok ok ok ok ok ok ok o K K
wokkckkkkkkkkkkkk PyCOMPSs Interactive skkskckkkkskokskokskokkkok
st sk sk sk sk ok ok ok ok ok ok ok ok o o o sk sk sk sk sk sk sk ok ok ok ok sk sk sk o o o ok sk sk sk sk sk sk sk sk sk sk sk ok sk sk ok ok ok ok

* Tt *
x) o\ /o \
7T /- I T B G I
x> : - Y N
£ (- - N N P /%
S L S N Lol /)
* () o .- *
* g -~ -~ -~ 3} *
* S U ~ -~ ~ *
* VA \ T *
x AT/ x
x S e \\=L x
* it R e *
* =T -~ Ay *
* /" -~ R *
* T-.< *
sk sk ok ok sk sk ok o ok sk sk sk o sk sk sk sk ok sk sk sk sk ok sk sk sk ok ok sksk sk s ok sk sk sk ok sk ok ok sksk ok ok ok
* - Starting COMPSs runtime... *
* - Log path : /home/javier/.COMPSs/InteractiveMode_10/
* - PyCOMPSs Runtime started... Have fun! *

>k >k >k 3K 3K 3k 3k 3k 5k 3k 3k 5k 5k 5k %k >k >k 3k 3k 3k 3k 3k %k 3k >k >k %k % K 5k 3k 5k 5k 5k 3k %k %k >k >k %k % K 3K 3k 5k %k %k %k %k >k >k k % %

10.1.10.3 Create a file to define the tasks

Importing task, implement and constraint modules

[3]: %%writefile module.py

from pycompss.api.task import task
from pycompss.api.implement import implement
from pycompss.api.constraint import constraint

Writing module.py

10.1.10.4 Declaring tasks into the file

Declare functions and decorate with @task those that should be tasks

[4]: YJwritefile -a module.py

Qconstraint (computing_units='1")
Otask(returns=1list)
def addtwovectors(listl, list2):
for i in range(len(listl)):
list1[i] += 1list2[i]
return listl

Appending to module.py

10.1. Syntax 307

[5]:

[6]:

[7]:

COMPSs Documentation, 2.9

Jhwritefile -a module.py

@implement (source_class="module",
Qconstraint (computing_units='4"')
Otask(returns=list)
def addtwovectorsWithNumpy(listl,
import numpy as np
x = np.array(listl)
y = np.array(list2)
z=3x+y
return z.tolist()

method="addtwovectors")

list2):

Appending to module.py

10.1.10.5 Invoking tasks

from pycompss.api.api import compss_wait_on
from module import addtwovectors
from random import random

Just import and use addtwovectors

vectors = 100

vector_length = 5000

vectors_a = [[random() for i in range(vector_length)] for i in range(vectors)]
vectors_b = [[random() for i in range(vector_length)] for i in range(vectors)]

results = []
for i in range(vectors):
results.append(addtwovectors(vectors_al[i], vectors_b[i]))

Accessing data outside tasks requires synchronization

results = compss_wait_on(results)
print (len(results))

print(results[0])

100
[1.1342111850577536, 0.5278806345422292,
-643013525597227, 0.6045875820938854,

1.7941518439053241,
1.3846094340234631,

0.477653194894226, 1.
1.0876896292407676, O.

—8244129257491345, 1.4043757995506223, 0.3056240277168034, 0.9201439479275588, 1.
—246609587866201, 1.2687853546889625, 1.4683707828223982, 0.8593918066098046, 1.
—4914222265622252, 1.9175226487486383, 1.397593438527184, 0.799869415930711, 1.
—7839321841565448, 1.655664412093415, 0.706206155776546, 1.0514874173801259, 1.
—1741535712194424, 0.7816711714346283, 0.3709620768909637, 1.2421283483285572, 1.
—0898514081809914, 1.7119215417673588, 1.43035279168674, 0.31335527355349213, 1.
—2130943648505186, 0.8609455786135065, 0.970040083675359, 0.9493184902133436, O.
—7455981142716729, 1.4261010705365287, 1.3006884738220161, 0.794818426368219, 1.
—6078648432243612, 1.8146416498733728, 1.6262307529486548, 1.1076894390611458, 1.
—»188617847835821, 0.5658898351111468, 0.3765595525929517, 1.144012272635464, 1.
—1269479981959045, 1.5779476598395945, 0.5310416609319845, 1.2137146824340994, 1.
—3115412433664884, 1.3302391252758574, 1.092595718830884, 0.5971210231687093, 1.
—1248315975536989, 0.23336156073497716, 1.2986094731417164, 0.8567830336155204, 1.
—0204230133832413, 1.0426277660329069, 1.7457395348340272, 1.4979604887008002, O.
—8999443968466122, 1.4610993201757707, 1.0434640443395091, 0.6804818160272217, 1.
—4371220774959597, 0.968686692289904, 1.1876358267837062, 1.291750511582375, O.

—27877854842348593, 0.8217107391322082, 0.7850745749977232, 0.8523202575880965, 1.

—3886142437375102,

0.6232592725501601,

0.7998842122724923, 1.713219765873970%pntinues on next page)

—0330350895263634, 0.3117934109281717, 0.5185430494930532, 0.9387478919316365, O.

t>1458452771762542,
—3879941521630865,
. B57825474444929478 .

1. 1568822733714978 0. 6158415795264056
1.0372175606985587 ,
1.9010169842232587,
1.6479874937676084 .

'Ss Notebooks

1.4077745052139004,
0.5109223444345973,
0.40217473662961434

1.3703714582458701, 1.
1.25749671734493, 1.
01.119986901274799. 1.

[8]:

[1]:

[2]:

COMPSs Documentation,

2.9

(continued from previous page)

10.1.10.6 Stop the runtime

ipycompss.stop(sync=True)

stk e ok sk ok o stk ok ok sk sk ok ok ok sk sk ok stk sk e ok stk ok sk ok sk ko sk ok sk ok ok sk sk ok ok
sokkkkkokkokkokkkkk STOPPING PyCOMPSS ok skskkskokskokkokkokkkkkok
skokokok ok sk okok ok ok sk okok ok o okok ko ok sk ko ok ok sk ko ok ok skokok ok ook skokok ok sk ko ok sk okok ok ok
Checking if any issue happened.

Synchronizing all future objects left on the user scope.
Found a list to synchronize: vectors_a

Found a list to synchronize: vectors_b

Found a list to synchronize: results
sk sk ok sk sk o ok sk sk ok ok sk sk sk sk sk sk sk sk ok ok sksk sk ok sksksk sk ok sk sksk sk ok sksk ok ok skskok ok ok

10.1.11 PyCOMPSs: Other decorators - Binary

In this example we will how to invoke binaries as tasks with PyCOMPSs.

10.1.11.1 Import the PyCOMPSs library

import pycompss.interactive as ipycompss

10.1.11.2 Start the runtime

Initialize COMPSs runtime Parameters indicates if the execution will generate task graph, tracefile, monitor

interval and debug information.

import os
if 'BINDER_SERVICE_HOST' in os.environ:
ipycompss.start(debug=False,
project_xml='../xml/project.xml’',
resources_xml='../xml/resources.xml')
else:
ipycompss.start(graph=True, monitor=1000, trace=True, debug=True)

sk sk ok sk ok sk ok ok ok ok ok ok ok ok ok sk sk ok sk ok sk ok ok sk ok sk ok sk sk ok sk ok sk ok ook sk ok sk ok sk ok ok sk ok ok ok ook ok
*kkkkkkkkokkokkkk PyCOMPSs Interactive skskskskskskskokkokkokkkkok
sk ok sk ok ok ok ok ok sk ok ok sk ok sk ok sk ok ok ok sk ok sk ok ok sk ok sk ok sk ok sk ok ok ok sk ok sk sk ok sk ok sk ok sk ok ok ok ok k ok ok sk ok
:) [\ /= \
T /.- 7T | ([GRS
> T ! < / ___/ Ne___ /
(- -)2 I D /7
R T l_____ (I /__/

L -~ - -
AN AN
T\ //
R S S

-~ A= St

* X X X X X X X X X X * *
~
~
|
|
I
* X X X X X X X X X X X *

(continues on next page)

10.1. Syntax

309

COMPSs Documentation, 2.9

(continued from previous page)

* ST =T AN *
* /T~ .- T T-T-l *
* o< *
skt ok sk sk s ok sk sk sk sk sk sk sk sk ok sk sk sk sk ok sksk sk ok sksksk sk ok sk sksk sk ok sksk ok ok skskok ok ok
* - Starting COMPSs runtime... *
* - Log path : /home/javier/.COMPSs/InteractiveMode_11/
* - PyCOMPSs Runtime started... Have fun! *

>k >k 3k 3K 3k 5k 3k 5k 5k 3k >k 5k 5k %k %k >k >k 5k 5k 5k 3k %k %k %k >k %k %k %k >k >k 5k 5k 5k %k %k %k %k >k >k %k %k >k >k >k >k >k %k %k %k >k >k %k % %

10.1.11.3 Importing task and binary modules

Import task module before annotating functions or methods

[3]: from pycompss.api.task import task
from pycompss.api.binary import binary
from pycompss.api.parameter import *

10.1.11.4 Declaring tasks

Declare functions and decorate with @Qtask those that should be tasks and with @binary the ones that execute a
binary file

[4]: @binary(binary="sed")
O@task(file=FILE_INOUT)
def sed(flag, expression, file):
Equivalent to: $ sed flag expresstion file
pass

[5]: @binary(binary="grep")
Otask(infile={Type:FILE_IN, StdIOStream:STDIN}, result={Type:FILE_0UT, StdIOStream:STDOUT})
def grep(keyword, infile, result):
Equivalent to: $ grep keyword < infile > result
pass

10.1.11.5 Invoking tasks

[6]: from pycompss.api.api import compss_open

finout = "inoutfile.txt"

with open(finout, 'w') as finout_d:
finout_d.write("Hi, this a simple test!")
finout_d.write("\nHow are you?")

sed('-i', 's/Hi/Hello/g', finout)
fout = "outfile.txt"
grep("Hello", finout, fout)

Task definition detected.
Found task: sed
Task definition detected.
Found task: grep

310 Chapter 10. PyCOMPSs Notebooks

COMPSs Documentation, 2.9

Accessing data outside tasks requires synchronization

[7]: # Check the result of 'sed'
with compss_open(finout, "r") as finout_r:
sedresult = finout_r.read()
print (sedresult)

Hello, this a simple test!
How are you?

[8]: # Check the result of 'grep'
with compss_open(fout, "r") as fout_r:
grepresult = fout_r.read()
print (grepresult)

Hello, this a simple test!

10.1.11.6 Stop the runtime

[9]: ipycompss.stop(sync=True)

sk sk sk sk sk ok ok ok ok o o o o o ok ok ok ok ok sk sk sk sk sk sk sk sk o o o o o o ke ok ok ok sk sk sk sk sk sk sk ok ok o o o ok
sokkkkkkkkokkokkkk STOPPING PyCOMPSs okskskskskskskskskoskoskokokkok ok ok

stk sk sk sk sk sk sk sk sk sk ok o o o ok ok ok ok ok sk sk sk sk sk sk sk sk sk sk sk s ok ok ok sk ok ok sk sk sk sk sk sk sk sk sk sk sk sk ok ok ok
Checking if any issue happened.

Synchronizing all future objects left on the user scope.
[ERRMGR] - WARNING: Error while trying to merge files
sk sk sk sk sk sk sk sk sk sk sk ok ok o o ok ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk o o ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok ok ok ok

10.1.12 PyCOMPSs: Integration with Numba

In this example we will how to use Numba with PyCOMPSs.

10.1.12.1 Import the PyCOMPSs library

[1]: import pycompss.interactive as ipycompss

10.1.12.2 Starting runtime

Initialize COMPSs runtime Parameters indicates if the execution will generate task graph, tracefile, monitor
interval and debug information.

[2]: import os
if 'BINDER_SERVICE_HOST' in os.environ:
ipycompss.start(graph=True, debug=False,
project_xml='../xml/project.xml',
resources_xml='../xml/resources.xml')
else:
ipycompss.start (graph=True, monitor=1000, trace=True, debug=False)

st sk sk sk sk sk sk ok ok ok ok ok o o o o sk sk sk sk sk sk sk sk sk sk sk sk sk sk o o ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok ok ok
wokxkkkkkokkkkkkk PyCOMPSs Interactive sxkskkkkkkkkkskkkxk

(continues on next page)

10.1. Syntax 311

COMPSs Documentation, 2.9

(continued from previous page)

>k >k 3K 3K 3K 3K 3k 3k 5k 3k 3k 5k 5k 5k %k %k 5k 3K 3k 3k 3k 3k %k 5k 5k 5k %k % K 3K 3K 3K 5k 3k %k %k 5k >k >k %k % %K 3K 3k 5k 5k %k %k %k %k >k k% %

* T *
* :) l____\ VAR
*x T T -\ /o= 7T) o) |
x> A < / ___/ \eem /[*
x (R) ol /o
T Loy I TR VA
* (:) .-t *
* e - - -~} *
* N ~ -~ ~ *
* A\ \ T *
x Y x
* S e L\ x
* -~ e *
* ST =T /-7 *
* /T o= 7 - T *
* o< *
sk sk sk o ke ok sk sk ok o ok sk sk sk o ok sk sk sk s ok sk sk sk ke ok sk sk sk ke ok sksk sk e ok sk sk sk s ok ok sk sk ok ok sk sk ok ok ok
* - Starting COMPSs runtime... *
* - Log path : /home/javier/.COMPSs/InteractiveMode_12/
* - PyCOMPSs Runtime started... Have fun! *

>k K 3K 3K 3K 3K 3K 3k 5k 5k 3k 5k 5k 5k %k %k 3k 3K 5k 3k 3k 3k 5k 5k 5k 5k %k %K K 3K 3K 5K 5k 3k %k 5k 5k >k %k %k X K 3K 3K 5k % %k %k %k >k >k %k % Xk

10.1.12.3 Importing task and arguments directionality modules

Import task module before annotating functions or methods

[3]: from pycompss.api.task import task
from pycompss.api.parameter import *
from pycompss.api.api import compss_barrier
from pycompss.api.api import compss_wait_on

10.1.12.4 Importing other modules

Import the time and numpy modules

[4]: import time
import numpy as np

10.1.12.5 Declaring tasks

Declare functions and decorate with @task those that should be tasks — Note that they are exactly the same but
the “numba” parameter in the @Qtask decorator

[5]: @task(returns=1, numba=False) # Default: numba=False
def ident_loops(x):
r = np.empty_like(x)
n = len(x)
for i in range(n):
r[i] = np.cos(x[i]) #** 2 + np.sin(x[i]) ** 2
return r

312 Chapter 10. PyCOMPSs Notebooks

COMPSs Documentation, 2.9

[6]: @task(returns=1, numba=True)
def ident_loops_jit(x):
r = np.empty_like(x)
n = len(x)
for i in range(n):
r[i] = np.cos(x[i]) ** 2 + np.sin(x[i]) ** 2
return r

10.1.12.6 Invoking tasks

[7]: size = 1000000
ntasks = 8

Run some tasks without numba jit
start = time.time()
for i in range(ntasks):

out = ident_loops(np.arange(size))
compss_barrier()
end = time.time()

Run some tasks with numba jit
start_jit = time.time()
for i in range(ntasks):
out_jit = ident_loops_jit(np.arange(size))
compss_barrier()
end_jit = time.time()

Get the last result of each run to compare that the results are ok
out = compss_wait_on(out)

out_jit = compss_wait_on(out_jit)

print ("TIMING RESULTS:")

print ("* ident_loops : %s seconds" % str(end - start))
print("* ident_loops_jit : ’s seconds" 7, str(end_jit - start_jit))
if len(out) == len(out_jit) and list(out) == list(out_jit):

print ("* SUCCESS: Results match.")
else:

print("* FAILURE: Results are different!!!")

Found task: ident_loops

Found task: ident_loops_jit

TIMING RESULTS:

* ident_loops : 0.06554532051086426 seconds
* ident_loops_jit : 0.05343270301818848 seconds
* SUCCESS: Results match.

10.1. Syntax 313

COMPSs Documentation, 2.9

10.1.12.7 Stop the runtime

[8]: ipycompss.stop(sync=False)

sk sk s o o ok sk sk ok e sk sk ok o sk sk ok s ok sk ok sk e ok sk sk sk e ok sk sk sk e sk sk ok o ok sk sk ok e sk sk sk ok ek ok
woksokkckkkkkkkkkk STOPPING PyCOMPSS okkokskokskokokkokkokkokkokok
sk sk o ok sk sk ok o ok sk sk sk o ok sk sk ok sk ok sk sk sk sk ke ok sk sk sk ok sksk sk s ok sk sk sk ok ok sk ok ok sk sk ok ok ok
Checking if any issue happened.

Warning: some of the variables used with PyCOMPSs may

have not been brought to the master.
skt ok sk ok o ok stk ok o sk sk ok ok ok sk ok ok stk ok ok stk ok ok sk sk ok ok sk o ok sk ok ok ok

10.1.13 Dislib tutorial

This tutorial will show the basics of using dislib.

10.1.13.1 Setup

First, we need to start an interactive PyCOMPSs session:

[1]: import pycompss.interactive as ipycompss
import os
if 'BINDER_SERVICE_HOST' in os.environ:
ipycompss.start(graph=True,
project_xml='../xml/project.xml’,
resources_xml='../xml/resources.xml')
elliser:
ipycompss.start (graph=True, monitor=1000)

sk ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok sk sk ok ok ok ok ok ok sk sk sk ok ok ok ok sk sk ok sk ok ok ok ok sk sk sk sk ok ok ok ok okok sk ok
*kkkkkkkkkkkkkk PyCOMPSs Interactive skskskskskskskokskokkokkkkk
ke sk ok ok sk ok ok ke sk ok sk sk ok ok s ok ok sk ok ok sk sk sk ok sk sk ok sk sk ok sk sk sk ok sk sk ok sk sk ok ok sk sk ok sk sk ok sk sk ok ok sk ok ok

* ST e——. *
* :) l____\ /oo N\ x
* 7T -\ /.- 7T D G I
* >) ! < / ___/ ____ / %
*(- -)2 I DU /o *
e P P (. /__/ *
* () o .- *
* ~o- == -~ -~} *
* Tt - =T\l =T Nt *
* A\ \ T *
* AL/ x
x S e L\ x
* e e *
* L =T /-7 *
* /T o= 7 - T *
* o< *
stk ok sk sk ok sk sk sk ks s ksl sk ok sk sk sk sk sk sk sk sk sk ok sk sk ok sk sk sk sk ks ks
* - Starting COMPSs runtime... *
* - Log path : /home/javier/.COMPSs/InteractiveMode_13/
* - PyCOMPSs Runtime started... Have fun! *

>k >k 3K 3K 3K 3K 3k 5k 5k 3k 3k 5k 5k 5k %k %k 3k 3K 3k 3k 3k 3k 5k 5k 5k 5k %k % K 3K 3K 5K 5k 5k 3k 5k 5k >k 5k %k X K 3K 3k 3k % %k %k %k >k >k k % Xk

Next, we import dislib and we are all set to start working!

314 Chapter 10. PyCOMPSs Notebooks

https://dislib.bsc.es

[2]:

[3]:

[3]:

[4]:
[4]:

[5]:
[5]:

[6]:

[6]:

COMPSs Documentation, 2.9

import dislib as ds

10.1.13.2 Distributed arrays

The main data structure in dislib is the distributed array (or ds-array). These arrays are a distributed representation
of a 2-dimensional array that can be operated as a regular Python object. Usually, rows in the array represent
samples, while columns represent features.

To create a random array we can run the following NumPy-like command:

x = ds.random_array(shape=(500, 500), block_size=(100, 100))
print (x.shape)
x

(500, 500)
ds-array(blocks=(...), top_left_shape=(100, 100), reg_shape=(100, 100), shape=(500, 500),,

—.sparse=False)

Now x is a 500x500 ds-array of random numbers stored in blocks of 100x100 elements. Note that x is not stored in
memory. Instead, random_array generates the contents of the array in tasks that are usually executed remotely.
This allows the creation of really big arrays.

The content of x is a list of Futures that represent the actual data (wherever it is stored).
To see this, we can access the _blocks field of x:
x._blocks[0] [0]

<pycompss.runtime.management.classes.Future at 0x7fb7a58ca8b0>

block_size is useful to control the granularity of dislib algorithms.

To retrieve the actual contents of x, we use collect, which synchronizes the data and returns the equivalent
NumPy array:

x.collect()

array([[0.48604732, 0.68571232, 0.98557605, ..., 0.51530027, 0.39511585,
0.42942001],
[0.03398195, 0.40964073, 0.5437061 , ..., 0.16162333, 0.79046618,
0.71677277],
[0.82399233, 0.80869154, 0.16965568, ..., 0.79380114, 0.31004525,
0.51511589],
[0.57630698, 0.72028925, 0.11842501, ..., 0.92236462, 0.5837854 ,
0.92114111]7,
[0.84521256, 0.17909749, 0.42140394, ..., 0.95331429, 0.01587735,
0.58532187],
[0.81065273, 0.5666422 , 0.65635218, ..., 0.58820423, 0.42493203,

0.84351429]11])

Another way of creating ds-arrays is using array-like structures like NumPy arrays or lists:

x1 = ds.array([[1, 2, 3], [4, 5, 6]], block_size=(1, 3))
x1

ds-array(blocks=(...), top_left_shape=(1, 3), reg_shape=(1, 3), shape=(2, 3), sparse=False)

Distributed arrays can also store sparse data in CSR format:

10.1. Syntax 315

[7]:

[7]1:

[8]:
[8]:

[9]:

[10]:

[117:
[11]:

[12]:
[12]:

COMPSs Documentation, 2.9

from scipy.sparse import csr_matrix

sp = csr_matrix([[0, O, 1], [1, O, 111)
x_sp = ds.array(sp, block_size=(1, 3))
X_sp

ds-array(blocks=(...), top_left_shape=(1, 3), reg_shape=(1, 3), shape=(2, 3), sparse=True)
In this case, collect returns a CSR matrix as well:

x_sp.collect()

<2x3 sparse matrix of type '<class 'numpy.int64'>'
with 3 stored elements in Compressed Sparse Row format>

Loading data

A typical way of creating ds-arrays is to load data from disk. Dislib currently supports reading data in CSV and
SVMLight formats like this:

X, y = ds.load_svmlight_file("./files/libsvm/1", block_size=(20, 100), n_features=780, store_
—sparse=True)

print(x)
csv = ds.load_txt_file("./files/csv/1", block_size=(500, 122))

print (csv)

ds-array(blocks=(...), top_left_shape=(20, 100), reg_shape=(20, 100), shape=(61, 780),
—sparse=True)

ds-array(blocks=(...), top_left_shape=(500, 122), reg_shape=(500, 122), shape=(4235, 122),,
- sparse=False)

Slicing
Similar to NumPy, ds-arrays support the following types of slicing:

(Note that slicing a ds-array creates a new ds-array)

x = ds.random_array((50, 50), (10, 10))

Get a single row:

x[4]

ds-array(blocks=(...), top_left_shape=(1, 10), reg_shape=(10, 10), shape=(1, 50),,
—.sparse=False)

Get a single element:

x[2, 3]

ds-array(blocks=(...), top_left_shape=(1, 1), reg_shape=(1, 1), shape=(1, 1), sparse=False)

Get a set of rows or a set of columns:

316 Chapter 10. PyCOMPSs Notebooks

[13]:

[14] :
[14]:

[15]:
[15]:

[16]:
[16]:

COMPSs Documentation,

2.9

Consecutive rows
print (x[10:20])

Consecutive columns
print(x[:, 10:20])

Non comnsecutive rows
print(x[[3, 7, 22]1]1)

Non comsecutive columns
print(x[:, [5, 9, 4811)

ds-array(blocks=(...), top_left_shape=(10, 10), reg_shape=(10, 10), shape=(10, 50),
—sparse=False)

ds-array(blocks=(...), top_left_shape=(10, 10), reg_shape=(10, 10), shape=(50, 10),
—sparse=False)

ds-array(blocks=(...), top_left_shape=(3, 10), reg_shape=(10, 10), shape=(3, 50),,
—.sparse=False)

ds-array(blocks=(...), top_left_shape=(10, 3), reg_shape=(10, 10), shape=(50, 3),,
—.sparse=False)

Get any set of elements:

x[0:5, 40:45]

ds-array(blocks=(...), top_left_shape=(5, 5), reg_shape=(10, 10), shape=(5, 5), sparse=False)

Other functions

Apart from this, ds-arrays also provide other useful operations like transpose and mean:

x.mean (axis=0) .collect ()

array([0.51352356, 0.49396794, 0.4661033 , 0.48026991, 0.50136143,
0.49323405, 0.51248831, 0.51658519, 0.4904544 , 0.47166468,
0.50245676, 0.49936659, 0.47499634, 0.52566765, 0.53676456,
0.59127036, 0.50947458, 0.47320677, 0.42695456, 0.54335201,
0.51780756, 0.49855486, 0.53845333, 0.37299501, 0.51229418,
0.43110043, 0.47262688, 0.41698864, 0.54994596, 0.46676007,
0.46070067, 0.48861301, 0.45868291, 0.53380687, 0.50555055,
0.53453463, 0.43711111, 0.52115681, 0.48152436, 0.49215593,
0.41552034, 0.47669533, 0.5610678 , 0.43511911, 0.49611885,
0.44116871, 0.42241364, 0.48626255, 0.51636529, 0.44251849])

x.transpose() .collect ()

array([[0.02733543, 0.65891797, 0.36654465, ..., 0.52109164, 0.86395718,

0.93593907],
[0.41462264, 0.97419918, 0.14124931, ..., 0.15893453, 0.49486474,
0.14138483],
[0.91312707, 0.53860404, 0.96686988, ..., 0.78763956, 0.18268972,
0.20551984],
[0.19468602, 0.62184611, 0.81007025, ..., 0.88719987, 0.55132466,
0.32694948] ,
[0.19221646, 0.64678511, 0.98416872, ..., 0.18736269, 0.51392039,

0.59614856] ,

(continues on next page)

10.1. Syntax

317

COMPSs Documentation, 2.9

(continued from previous page)

[0.49591758, 0.17913008, 0.11419029, ..., 0.02701779, 0.22316829,
0.78426262]1])

10.1.13.3 Machine learning with dislib

Dislib provides an estimator-based API very similar to scikit-learn. To run an algorithm, we first create an
estimator. For example, a K-means estimator:

[17]: from dislib.cluster import KMeans
km = KMeans(n_clusters=3)

Now, we create a ds-array with some blob data, and fit the estimator:

[18]: from sklearn.datasets import make_blobs

create ds-array

x, y = make_blobs(n_samples=1500)

x_ds = ds.array(x, block_size=(500, 2))
km.fit(x_ds)

[18] : KMeans(n_clusters=3, random_state=RandomState(MT19937) at O0x7FB7D4FFB240)

Finally, we can make predictions on new (or the same) data:

[19]: y_pred = km.predict(x_ds)
y_pred

[19]: ds-array(blocks=(...), top_left_shape=(500, 1), reg_shape=(500, 1), shape=(1500, 1),
—.sparse=False)
y_pred is a ds-array of predicted labels for x_ds
Let’s plot the results

[20] : Ymatplotlib inline
import matplotlib.pyplot as plt

centers = km.centers

set the color of each sample to the predicted label
plt.scatter(x[:, 0], x[:, 1], c=y_pred.collect())

plot the computed centers in red
plt.scatter(centers[:, 0], centers[:, 1], c='red')

[20]: <matplotlib.collections.PathCollection at 0x7fb7al37d640>

318 Chapter 10. PyCOMPSs Notebooks

https://scikit-learn.org/stable/

[21]:

[22] :

[22]:

COMPSs Documentation, 2.9

-5.0 —2.5 0.0 25 50 5 10.0 12.5

Note that we need to call y_pred.collect() to retrieve the actual labels and plot them. The rest is the same as
if we were using scikit-learn.

Now let’s try a more complex example that uses some preprocessing tools.
First, we load a classification data set from scikit-learn into ds-arrays.

Note that this step is only necessary for demonstration purposes. Ideally, your data should be already loaded in
ds-arrays.

from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split

X, y = load_breast_cancer(return_X_y=True)
x_train, x_test, y_train, y_test = train_test_split(x, y)

X_train = ds.array(x_train, block_size=(100, 10))
y_train = ds.array(y_train.reshape(-1, 1), block_size=(100, 1))

x_test = ds.array(x_test, block_size=(100, 10))
y_test = ds.array(y_test.reshape(-1, 1), block_size=(100, 1))

Next, we can see how support vector machines perform in classifying the data. We first fit the model (ignore any
warnings in this step):

from dislib.classification import CascadeSVM
csvm = CascadeSVM(Q)

csvm.fit(x_train, y_train)

/home/javier/.local/lib/python3.8/site-packages/dislib/classification/csvm/base.py:374:
—RuntimeWarning: overflow encountered in exp

k = np.exp(k)
/home/javier/.local/lib/python3.8/site-packages/dislib/classification/csvm/base.py:342:
—RuntimeWarning: invalid value encountered in double_scalars

delta = np.abs((w - self._last_w) / self._last_w)

CascadeSVM()

and now we can make predictions on new data using csvm.predict(), or we can get the model accuracy on the
test set with:

10.1. Syntax 319

COMPSs Documentation, 2.9

[23]: score = csvm.score(x_test, y_test)

score represents the classifier accuracy, however, it is returned as a Future. We need to synchronize to get the
actual value:

[24]: from pycompss.api.api import compss_wait_on

print (compss_wait_on(score))

0.6503496503496503

The accuracy should be around 0.6, which is not very good. We can scale the data before classification to improve
accuracy. This can be achieved using dislib’s StandardScaler.

The StandardScaler provides the same API as other estimators. In this case, however, instead of making predic-
tions on new data, we transform it:

[25]: from dislib.preprocessing import StandardScaler
sc = StandardScaler()

fit the scaler with train data and transform it
scaled_train = sc.fit_transform(x_train)

transform test data
scaled_test = sc.transform(x_test)

Now scaled_train and scaled_test are the scaled samples. Let’s see how SVM perfroms now.

[26]: csvm.fit(scaled_train, y_train)
score = csvm.score(scaled_test, y_test)
print (compss_wait_on(score))

0.972027972027972

The new accuracy should be around 0.9, which is a great improvement!

Close the session

To finish the session, we need to stop PyCOMPSs:

[27]: ipycompss.stop()

sk sk o o o ok sk ok ok o sk sk ok o sk sk ok o ok sk sk ok sk o sk sk sk sk o ok sk sk sk o ok sk sk ok o sk sk ok ok ok sk sk ok o ok
wookkckkkokkokkkkk STOPPING PyCOMPSS okkokskokskokokkokkokkokkokok
sk sk sk o ke ok sk sk ok o ok sk sk sk o ok sk sk ok s ok sk ok sk ok sk sk sk ok sk sk sk e ok sk sk sk sk ok ok sk sk ok ok sk sk ok ok ok
Checking if any issue happened.

Warning: some of the variables used with PyCOMPSs may

have not been brought to the master.
sk stk e ok sk ok o stk ok ok sk sk sk sk ok sk sk ok stk sk ok stk sk sk ok sk ko sk ok sk ok ok stk ok ok ok

320 Chapter 10. PyCOMPSs Notebooks

COMPSs Documentation, 2.9

10.1.14 Machine Learning with dislib

This tutorial will show the different algorithms available in dislib.

10.1.14.1 Setup

First, we need to start an interactive PyCOMPSs session:

[1]: import pycompss.interactive as ipycompss
import os
if 'BINDER_SERVICE_HOST' in os.environ:
ipycompss.start (graph=True,
project_xml='../xml/project.xml',
resources_xml='../xml/resources.xml')
else:
ipycompss.start (graph=True, monitor=1000)

st sk sk sk ok ok ok ok ok ok ok ok ok o o o sk sk sk sk sk sk ok ok ok ok ok sk sk ok o o ok ok ok sk sk sk sk sk sk sk sk sk sk ok sk sk ok ok ok ok
wokxkkkkkkkkkkkk PyCOMPSs Interactive sxkskkkkkkkskkskkkkk
sk sk sk sk sk sk sk sk ok ok ok ok ok o o ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk o o o ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk o ok ok ok

* _TYoe-. *
*) l____\ VAR
* T - /o= =) [GRS
* >) ! < / ___/ > ___ < %
* - - 2NN I U B D I
R e PV [) I VU /o*
* () .- *
* ~o- -~ -~ -~ 3} *
* Rt ~ -~ ~ *
* AR AN *
x AT/ x
* S e\ x
* B el *
* =T =T /-7 *
* /T .- T TR *
* - .< *
sk sk o o o sk ok ok o sk ok ok o sk sk ok o sk sk ok sk o ok sk ok sk o ok sk sk sk o ok sk sk ok o ok sk sk ok ok o sk sk ok ok o ok
* - Starting COMPSs runtime... *
* - Log path : /home/user/.COMPSs/InteractiveMode_14/

* - PyCOMPSs Runtime started... Have fun! *

>k >k >k 3k 5k 5k ok ok 5k >k >k >k >k %k >k >k >k >k 5k 5k 5k %k %k >k >k >k %k >k >k >k >k 5k 5k %k >k %k >k >k %k %k >k >k >k >k >k >k %k >k >k >k >k k % %

Next, we import dislib and we are all set to start working!

[2]: import dislib as ds

10.1.14.2 Load the MNIST dataset

[3]: x, y = ds.load_svmlight_file('/tmp/mnist/mnist', # Download the dataset
block_size=(10000, 784), n_features=784, store_sparse=False)

[4]: x.shape
[4]: (60000, 784)

[5]: y.shape

10.1. Syntax 321

https://dislib.bsc.es

[5]:

[6]:

[6]:

[7]:

[8]:

[8]:

[9]:
[9]:

[10]:

[11]7:

COMPSs Documentation, 2.9

(60000, 1)

y_array = y.collect()
y_array

array([5., 0., 4., ..., 5., 6., 8.1)
img = x[0].collect() .reshape(28,28)

Jmatplotlib inline
import matplotlib.pyplot as plt
plt.imshow(img)

<matplotlib.image.AxesImage at Ox7fcdade69e48>

o
; i
10
15
20

25

0 3 10 15 20 23

int (y[0].collect())
5

10.1.14.3 dislib algorithms

Preprocessing

from dislib.preprocessing import StandardScaler
from dislib.decomposition import PCA

Clustering

from dislib.cluster import KMeans
from dislib.cluster import DBSCAN
from dislib.cluster import GaussianMixture

322

Chapter 10. PyCOMPSs Notebooks

[12]:

[13]:

[14]:

[15]:

[16]:

[177:

[17] :

COMPSs Documentation, 2.9
Classification
from dislib.classification import CascadeSVM
from dislib.classification import RandomForestClassifier
Recommendation
from dislib.recommendation import ALS
Model selection
from dislib.model_selection import GridSearchCV
Others
from dislib.regression import LinearRegression
from dislib.neighbors import NearestNeighbors
10.1.14.4 Examples
KMeans
kmeans = KMeans(n_clusters=10)
pred_clusters = kmeans.fit_predict(x).collect()
Get the number of images of each class in the cluster 0:
from collections import Counter
Counter (y_array [pred_clusters==0])
Counter ({3.0: 4064,
8.0: 1942,
9.0: 110,
2.0: 381,
1.0: 10,
5.0: 1910,
0.0: 187,
6.0: 29,
7.0: 6,
4.0: 11
10.1. Syntax 323

COMPSs Documentation, 2.9

GaussianMixture

Fit the GaussianMixture with the painted pixels of a single image:

[18]: import numpy as np
img_filtered_pixels = np.stack([np.array([i, j]) for i in range(28) for j in range(28) if,
—imgl[i,j] > 101)
img_pixels = ds.array(img_filtered_pixels, block_size=(50,2))
gm = GaussianMixture (n_components=7, random_state=0)
gm.fit(img_pixels)

Get the parameters that define the Gaussian components:

[19]: from pycompss.api.api import compss_wait_on
means = compss_wait_on(gm.means_)
covariances = compss_wait_on(gm.covariances_)
weights = compss_wait_on(gm.weights_)

Use the Gaussian mixture model to sample random pixels replicating the original distribution:

[20]: samples = np.concatenate([np.random.multivariate_normal (means[i], covariances[i],,
—int(weights[i]*1000))
for i in range(7)])
plt.scatter(samples[:,1], samples[:,0])
plt.gca() .set_aspect('equal', adjustable='box')
plt.gca() .invert_yaxis()
plt.draw()

PCA

[21]: pca = PCAQ)
pca.fit(x)

[21]: PCA(arity=50, n_components=None)

Calculate the explained variance of the 10 first eigenvectors:

[22]: sum(pca.explained_variance_[0:10])/sum(pca.explained_variance_)

[22]: 0.4881498035493399

Show the weights of the first eigenvector:

324 Chapter 10. PyCOMPSs Notebooks

[23]:
[23]:

[24]:

[24] :

[25]:

[26]:

COMPSs Documentation, 2.9
plt.imshow(np.abs(pca.components_[0]) .reshape(28,28))
<matplotlib.image.AxesImage at O0x7fcd9eabc550>

0
5
10
15
20
5

RandomForestClassifier

rf = RandomForestClassifier(n_estimators=5, max_depth=3)

rf.fit(x, y)

RandomForestClassifier(distr_depth='auto', hard_vote=False, max_depth=3,
n_estimators=5, random_state=None,
sklearn_max=100000000.0, try_features='sqrt')

Use the test dataset to get an accuracy score:

x_test, y_test = ds.load_svmlight_file('/tmp/mnist/mnist.test', block_size=(10000, 784), n_

—features=784, store_sparse=False)

score = rf.score(x_test, y_test)

print (compss_wait_on(score))

0.5965

Close the session

To finish the session, we need to stop PyCOMPSs:

ipycompss.stop()

K3k oK ok o K 3K oK ok o K oK oK ok ok KK oK ok ok o K 3K oK ok o K oK oK ok o oK K oK ok ok o K oK ok ok o K sk oK ok o K K ok ok o

*opkokkkokkkckkkokk STOPPING PyCOMPSS #okskokokskokok koo koo kokok k

sk sk ok o o koK ok ok o oK ok ok o ok ok ok o o K ok ok ok o ok sk ok ok o ok sk ok ok o o ok sk ok o o ok sk ok ok o ok ok ok

Warning: some of the variables used with PyCOMPSs may

have not been brought to the master.
K3k oK ok o K 3K oK ok o KK oK ok ok K oK ok ok o K ok oK ok o K K oK ok o oK K oK ok ok o K oK ok ok o K koK ok o K K ok ok o
10.1. Syntax 325

COMPSs Documentation, 2.9

10.2 Hands-on

Here you will find the hands on notebooks used in the tutorials.

10.2.1 Sort by Key

Algorithm that sorts the elements of a set of files and merges the partial results respecting the order.

10.2.1.1 First of all - Create a dataset

This step can be avoided if the dataset already exists.

If not, this code snipped creates a set of files with dictionary on each one generated randomly. Uses pickle.

[1]: def datasetGenerator(directory, numFiles, numPairs):
import random
import pickle
import os
if os.path.exists(directory):
print("Dataset directory already exists... Removing")
import shutil
shutil.rmtree(directory)
os.makedirs(directory)
for £ in range(numFiles):
fragment = {}
while len(fragment) < numPairs:
fragment [random.random()] = random.randint (0, 1000)
filename = 'file_' + str(f) + '.data'
with open(directory + '/' + filename, 'wb') as fd:
pickle.dump(fragment, fd)
print('File ' + filename + ' has been created.')

[2]: numFiles = 2
numPairs = 10
directoryName = 'mydataset'’
datasetGenerator(directoryName, numFiles, numPairs)

Dataset directory already exists... Removing
File file_0O.data has been created.
File file_1.data has been created.

[3]: # Show the files that have been created
%1ls -1 $directoryName

total 8
-rw-r--r-- 1 javier users 133 may 18 16:29 file_0.data
-rw-r--r-- 1 javier users 134 may 18 16:29 file_1.data

326 Chapter 10. PyCOMPSs Notebooks

[4]:

[5]:

[6]:

[7]:

[8]:

COMPSs Documentation, 2.9

10.2.1.2 Algorithm definition

import pycompss.interactive as ipycompss

import os

if

'BINDER_SERVICE_HOST' in os.environ:

ipycompss.start (graph=True,
project_xml='../xml/project.xml',
resources_xml='../xml/resources.xml')

else:

ipycompss.start (graph=True, monitor=1000)

KK KKK oK oK oK oK ok ok oK oK o o o o K K K K oK oK oK oK oK ok ok ok ok ok o o K K K K K oK ok ok ok ok ok ok ok ok ok ok o K K
*opkkckkkkkkkkkkk PyCOMPSs Interactive #kkkskskkskkkkkkokkkk
Kk ok ok ok ok ok oK 3K K K K K K o ok ok ok ok ok 3k K K K K K o ok ok ok ok ok ok K K K K K o o ok ok ok ok ok oK K K K K Kk ok

¥ X X X X X X X X X X X X X X *

o *
:) l___\ / ___ \ *

T -\ /.- "7 | [)| o=
> L < / ___/ ____ [/ =
e) R I /] %

R T [_____ [1] /__/ *
(:) - - *
_ - ~ .~ 3 %
SN ~ - ~ "

A N o7 *

N\ // *
T S S *

[iad -~} ot *
L g /- *
/_T__ .- el Tl *
“-.< *

>k >k >k 3K 3K 3k 3k 5k 5k 3k 3k 5k 5k 5k %k >k >k 3k 3k 3k 3k 3k %k 3k >k >k %k %k >k >k 5k 5k 5k 5k 3k %k %k >k >k %k % K 3k >k >k 5k %k %k %k >k >k k% %

* - Starting COMPSs runtime... *
* - Log path : /home/javier/.COMPSs/InteractiveMode_17/
* - PyCOMPSs Runtime started... Have fun! *

>k K 3K 3K 3K 3K 3k 5k 5k 5k 3k 5k 5k 5k %k %k 3k 3K 3k 3k 3k 3k 5k 5k 5k 5k %k %k K 3K 3K 5K 5k 3k %k 5k 5k >k 5k %k X K 3K 3K 5k 5k %k %k %k >k >k k % %

from pycompss.api.task import task
from pycompss.api.parameter import FILE_IN

Otask(returns=1list, dataFile=FILE_IN)
def sortPartition(dataFile):

1

Reads the dataFile and sorts its content which is assumed to be a dictionary {K: V}
:param path: file that contains the data
:return: a list of (K, V) patirs sorted.
1
import pickle
import operator
with open(dataFile, 'rb') as f:
data = pickle.load(f)
res = sorted(data, key=lambda (k, v): k, reverse=not ascending)
partition_result = sorted(data.items(), key=operator.itemgetter(0), reverse=False)
return partition_result

Otask(returns=list, priority=True)

(continues on next page)

10.2. Hands-on 327

[9]:

[10]:

COMPSs Documentation, 2.9

def

def

reducetask(a, b):

(continued from previous page)

Merges two partial results (lists of (K, V) patirs) respecting the order

:param a: Partial result a
:param b: Partial result b
:return: The merging result sorted
o
partial_result = []
i=0
j=20
while i < len(a) and j < len(b):
if alil < b[jl:
partial_result.append(al[i])
al, <5l
else:
partial_result.append(b[j])
j+=1
if i < len(a):
partial_result + ali:]
elif j < len(b):
partial_result + b[j:]
return partial_result

merge_reduce (function, data):
import sys
if sys.version_info[0] >= 3:
import queue as Queue
else:
import Queue
q = Queue.Queue()
for i in data:
q.put (i)
while not q.empty():
x = q.get()
if not q.empty():
y = q.getO
q.put (function(x, y))
else:
return x

MAIN

Parameters (that can be configured in the following cell): * datasetPath: The path where the dataset is (default:
the same as created previously).

import os
import time

from pycompss.api.api import compss_wait_on

datasetPath = directoryName

files = []

for

f in os.listdir(datasetPath):
files.append(datasetPath + '/' + f)

Where the dataset s

(continues on next page)

328

Chapter 10. PyCOMPSs Notebooks

[11]:

COMPSs Documentation, 2.9

startTime = time.time()

partialSorted = []

for £ in files:
partialSorted.append(sortPartition(f))

result = merge_reduce(reducetask, partialSorted)

result = compss_wait_on(result)

print ("Elapsed Time(s)")
print(time.time() - startTime)
import pprint

pprint.pprint (result)

Found task: sortPartition
Found task: reducetask
Elapsed Time(s)
3.6193034648895264
[(0.027312894275046573, 993),
(0.07138432853012677, 426),
(0.10308291658301261, 252),
(0.10421523358827744, 356),
(0.10743720335209561, 614),
(0.19426330574322814, 89),
(0.2120037521887378, 4),
(0.21274769665858428, 680),
(0.27702759534915444, 393),
(0.29308205906959617, 789),
(0.31724024656512495, 669),
(0.42922792366256235, 700),
(0.4319642313815307, 756),
(0.46956964955534164, 707),
(0.6944486231937671, 841),
(0.708700562554975, 720),
(0.7478662969947636, 874),
(0.9589965652687729, 304),
(0.9687167493887274, 12)]

ipycompss.stop()

sk ok sk sk sk sk sk sk ok o o o s ok ok ook ok sk sk sk sk sk sk sk sk sk sk sk s s ok ke ok ok ok sk sk sk sk sk sk sk sk ok sk sk sk ok ok ok
sokkkokkokkokkokkkkk STOPPING PyCOMPSS sokkskkskokskoskkokkokkkokkok
sk sk sk sk sk ok ok ok ok o o o o o ok ok ok ok ok sk sk sk sk sk sk sk sk oo o o o ke ok ok ok sk sk sk sk sk sk sk ok ok o o ok
Checking if any issue happened.

Warning: some of the variables used with PyCOMPSs may

have not been brought to the master.
sk sk o ok sk sk ok o ok sk sk sk o sk sk ok s ok sk sk sk sk ke ok sk sk sk ok sksk sk s ok sk sk sk ok ok sk ok ok sk skok ok ok

(continued from previous page)

10.2. Hands-on

329

COMPSs Documentation, 2.9

10.2.2 KMeans

KMeans is machine-learning algorithm (NP-hard), popularly employed for cluster analysis in data mining, and
interesting for benchmarking and performance evaluation.

The objective of the Kmeans algorithm to group a set of multidimensional points into a predefined number of
clusters, in which each point belongs to the closest cluster (with the nearest mean distance), in an iterative
process.

[1]: import pycompss.interactive as ipycompss

[2]: import os
if 'BINDER_SERVICE_HOST' in os.environ:

ipycompss.start(graph=True, # trace=True
project_xml='../xml/project.xml',
resources_xml='../xml/resources.xml')
else:

ipycompss.start (graph=True, monitor=1000) # trace=True

KKK 3K oK oK oK oK oK oK ok oK oK o o o o K K KK KoK oK oK oK oK ok ok ok ok o o o K K K K K oK oK oK oK oK ok ok ok ok ok ok o K K
*okkckkckkkokkkkkkk PyCOMPSs Interactive skkskckkkokskokskkskkkkok
st sk sk sk ok ok ok ok ok ok ok ok ok o o o ok sk sk sk sk ok ok ok ok ok ok sk sk sk o o o ok ok sk sk sk sk sk sk sk ok ok ok ok sk sk ok ok

AU AN
T\ /7
- T\ =/
T i A
ST =T AN
~_ <
stk sk sk ok sk sk kst etk sk sk sk ok sk sk ok sk stk stk ksl sk ok sk sk ok sk sk ok sk stk ko ok
* - Starting COMPSs runtime... *
* - Log path : /home/javier/.COMPSs/InteractiveMode_15/
* - PyCOMPSs Runtime started... Have fun! *
stk ok sk sk sk sk sk sk sk ok sk s ok sk sk sk o ks ks sk sk s ok sk sk ok sk sk sk ok sk sk sk sk

P
2
1
1
I
1
2
1
2
1
t
ST
XK K K K K K K K K K K X X X %

[3]: from pycompss.api.task import task
[4]: import numpy as np

[6]: def init_random(numV, dim, seed):

np.random. seed(seed)

¢ = [np.random.uniform(-3.5, 3.5, dim)]

while len(c) < numV:
p = np.random.uniform(-3.5, 3.5, dim)
distance = [np.linalg.norm(p-i) for i in c]
if min(distance) > 2:

c.append (p)
return c

330 Chapter 10. PyCOMPSs Notebooks

COMPSs Documentation, 2.9

[6]: #0task(returns=list) # Not a task for plotting
def genFragment(numV, K, c, dim, mode=’gauss'):
if mode == '"gauss":
n = int(float (numV) / K)
r = numV 7 K
data = []
for k in range(K):
s = np.random.uniform(0.05, 0.75)
for i in range(n+r):
d = np.array([np.random.normal (c[k] [jl, s) for j in range(dim)])
data.append(d)
return np.array(data) [:numV]
else:
return [np.random.random(dim) for _ in range(numV)]

[7]: @task(returns=dict)
def cluster_points_partial (XP, mu, ind):
dic = {}
for x in enumerate(XP):
bestmukey = min([(i[0], np.linalg.norm(x[1] - mu[i[0]])) for i in enumerate(mu)],
—key=lambda t: t[1])[0]
if bestmukey not in dic:
dic[bestmukey] = [x[0] + ind]
elisel:
dic[bestmukey] . append(x[0] + ind)
return dic

[8]: @task(returns=dict)
def partial_sum(XP, clusters, ind):
p = [(i, [(XP[j - ind]) for j in clusters[i]]) for i in clusters]
dic = {}
for i, 1 in p:
dic[i] = (len(1l), np.sum(l, axis=0))
return dic

[9]: @task(returns=dict, priority=True)
def reduceCentersTask(a, b):
for key in b:
if key not in a:
alkey]l = blkeyl
else:
alkey]l = (alkeyl[0] + blkeyl[0], alkeyl[1] + blkeyl[1])
return a

[10]: def mergeReduce(function, data):
from collections import deque
q = deque(list(range(len(data))))
while len(q):
x = q.popleft()
if len(q):
y = q.popleft()
data[x] = function(datal[x], datalyl)
q.append (x)
else:
return datal[x]

10.2. Hands-on 331

COMPSs Documentation, 2.9

[11]: def has_converged(mu, oldmu, epsilon, iter, maxIterations):
print("iter: " + str(iter))
print ("maxIterations: " + str(maxIterations))
if oldmu != []:
if iter < maxIterations:

aux = [np.linalg.norm(oldmuli] - mu[i]) for i in range(len(mu))]

distancia = sum(aux)
if distancia < epsilon * epsilon:

print("Distance_T: " + str(distancia))
return True

else:
print("Distance_F: " + str(distancia))

return False
else:
Reached the max amount of iterations
return True

[12]: def plotKMEANS(dim, mu, clusters, data):
import pylab as plt
colors = ['b','g','r','c','m','y"', 'k']
if dim == 2 and len(mu) <= len(colors):
from matplotlib.patches import Circle
from matplotlib.collections import PatchCollection
fig, ax = plt.subplots(figsize=(10,10))
patches = []
pcolors = []
for i in range(len(clusters)):
for key in clusters[i] .keys():
d = clusters[i] [key]
for j in d:
j =3j - 1i+* len(datal0])
C = Circle((datal[i] [j1[0], datali]l[j]1[11), .05)
pcolors.append(colors [key])
patches.append(C)
collection = PatchCollection(patches)
collection.set_facecolor(pcolors)
ax.add_collection(collection)
X, y = zip(kmu)
plt.plot(x, y, '*', c='y', markersize=20)
plt.autoscale(enable=True, axis='both', tight=False)
plt.show()
elif dim == 3 and len(mu) <= len(colors):
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = fig.add_subplot(111l, projection='3d')
for i in range(len(clusters)):
for key in clusters[i] .keys():
d = clusters[i] [key]
for j in d:
j =3j - i * len(datal0])

ax.scatter(datal[i] [j1[0], datalil[j]1[1], datali]l[jI[2], 'o',.

—c=colors[key])
X, ¥y, z = zip(*mu)
for i in range(len(mu)):
ax.scatter(x[i], y[il, z[i], s=80, c='y', marker='D')
plt.show()

(continues on next page)

332 Chapter 10. PyCOMPSs Notebooks

[13]:

COMPSs Documentation,

2.9

(continued from previous page)

else:
print ("No representable dim or not enough colours")

10.2.2.1 MAIN

Parameters (that can be configured in the following cell): * numV: number of vectors (default: 10.000)

* dim: dimension of the points (default: 2) * k: number of centers (default: 4) * numFrag: number of fragments
(default: 16) * epsilon: convergence condition (default: le-10) * maxIterations: Maximum number of iterations

(default: 20)

Jmatplotlib inline
import ipywidgets as widgets
from pycompss.api.api import compss_wait_on

w_numV = widgets.IntText(value=10000) # Number of Vectors - with 1000 7t is feasibley

—~to see the evolution across iterations

w_dim = widgets.IntText(value=2) # Number of Dimensions

w_k = widgets.IntText(value=4) # Centers

w_numFrag = widgets.IntText(value=16) # Fragments

w_epsilon = widgets.FloatText(value=1e-10) # Convergence condition
w_maxIterations = widgets.IntText(value=20) # Maxz number of tterations
w_seed = widgets.IntText (value=8) # Random seed

def kmeans(numV, dim, k, numFrag, epsilon, maxIterations, seed):
size = int(numV / numFrag)
cloudCenters = init_random(k, dim, seed) # centers to create data groups

X = [genFragment(size, k, cloudCenters, dim, mode='gauss') for _ in range(numFrag)]

mu = init_random(k, dim, seed - 1) # First centers
oldmu = []
n=20
while not has_converged(mu, oldmu, epsilon, n, maxIterations):
oldmu = mu
clusters = [cluster_points_partial (X[f], mu, f * size) for f in range(numFrag)]

partialResult = [partial_sum(X[f], clusters[f], f * size) for f in range(numFrag)]

mu = mergeReduce(reduceCentersTask, partialResult)
mu = compss_wait_on(mu)
mu = [mulc][1] / mulc][0] for ¢ in mu]
while len(mu) < k:
Add new random center if one of the centers has mo points.
indP = np.random.randint(0, size)
indF = np.random.randint (0, numFrag)
mu. append (X [indF] [indP])
n+=1
clusters = compss_wait_on(clusters)
plotKMEANS(dim, mu, clusters, X)

print ("Result:")
print("Iterations:
print("Centers:

n , n)

n s mu)

widgets.interact_manual (kmeans, numV=w_numV, dim=w_dim, k=w_k, numFrag=w_numFrag, epsilon=w_

—epsilon, maxIterations=w_maxIterations, seed=w_seed)

10.2. Hands-on

333

COMPSs Documentation, 2.9

interactive(children=(IntText (value=10000, description='numV'), IntText(value=2, description=
—'dim'), IntText(v...

[13]: <function __main__.kmeans(numV, dim, k, numFrag, epsilon, maxIterations, seed)>

[14]: ipycompss.stop()

stk ok sk sk kb sk sk sk sk s ok sk sk ok sk sk sk ok ks ks sk sk sk ok sk sk ok sk sk sk sk ks sk sk

woksokkkkkkkkkokkk STOPPING PyCOMPSS okkokskokskkokkokkokkokkkok

stk ok ook sk kst ke stk s kb sk ok sk sk ok sk st stk stk sk ok sk sk ok sk sk ok sk stk ko

Checking if any issue happened.

Warning: some of the variables used with PyCOMPSs may
have not been brought to the master.

stk ok sk sk ok sk sk kst ks s ksl sk ok sk sk ok sk sk sk ksl s ok sk sk ok sk sk sk sk ks

10.2.3 KMeans with Reduce

KMeans is machine-learning algorithm (NP-hard), popularly employed for cluster analysis in data mining, and
interesting for benchmarking and performance evaluation.

The objective of the Kmeans algorithm to group a set of multidimensional points into a predefined number of
clusters, in which each point belongs to the closest cluster (with the nearest mean distance), in an iterative
process.

[1]: import pycompss.interactive as ipycompss

[2]: import os
if 'BINDER_SERVICE_HOST' in os.environ:

ipycompss.start (graph=True, # trace=True
project_xml='../xml/project.xml',
resources_xml='../xml/resources.xml')
elliser:

ipycompss.start (graph=True, monitor=1000) # trace=True

KKK 3K oK oK oK oK oK oK ok oK oK o o K K K K K oK oK oK oK oK ok ok ok ok ok o o K K K K oK oK ok ok ok ok ok ok ok ok ok ok o K K
*okxckkkkkkkkkkkk PyCOMPSs Interactive sxkskkkkokkokskkskokkkok
st sk sk sk sk ok ok ok ok ok ok ok o o o o sk sk sk sk sk sk sk sk ok sk sk sk sk sk s o ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok ok

¥ XK X X X X X X X X X X X X X X
R
|
|
)
|
|
R
-
| .
R
|
R
R
¥ X X X X X X X X X X X X ¥ * *

~_ <
sk sk ok o ok sk sk sk ok ok ok o sk sk sk ok o ok o sk sk sk ok o ok o sk sk sk ok ok o sk sk sk ok ok ok o
* - Starting COMPSs runtime... *
* - Log path : /home/javier/.COMPSs/InteractiveMode_16/
* - PyCOMPSs Runtime started... Have fun! *
stk ok sk ok ok ok ok sk sk R sk R sk ok ok sk sk sk ok sk ok ok sk sk sk ok sk ok s sk sk sk sk ok sk sk sk sk ok ok ko

334 Chapter 10. PyCOMPSs Notebooks

COMPSs Documentation, 2.9

[3]: from pycompss.api.task import task
[4]: import numpy as np

[6]: def init_random(numV, dim, seed):

np.random.seed(seed)

¢ = [np.random.uniform(-3.5, 3.5, dim)]

while len(c) < numV:
p = np.random.uniform(-3.5, 3.5, dim)
distance = [np.linalg.norm(p-i) for i in c]
if min(distance) > 2:

c.append (p)
return c

[6]: #@task(returns=list) # Not a task for plotting
def genFragment(numV, K, c, dim, mode='gauss'):
if mode == "gauss":
n = int(float(numV) / K)
r = numV % K
data = []
for k in range(K):
s = np.random.uniform(0.05, 0.75)
for i in range(n+r):
d = np.array([np.random.normal(c[k] [j], s) for j in range(dim)])
data.append(d)
return np.array(data) [:numV]
else:
return [np.random.random(dim) for _ in range(numV)]

[7]: @task(returns=dict)
def cluster_points_partial (XP, mu, ind):
dic = {}
for x in enumerate(XP):
bestmukey = min([(i[0], np.linalg.norm(x[1] - mu[i[0]])) for i in enumerate(mu)],.
~key=lambda t: t[1]) [0]
if bestmukey not in dic:
dic[bestmukey] = [x[0] + ind]
else:
dic[bestmukey] . append(x[0] + ind)
return dic

[8]: @task(returns=dict)
def partial_sum(XP, clusters, ind):
p = [(i, [(XP[j - ind]) for j in clusters[i]]) for i in clusters]
dic = {}
for i, 1 in p:
dic[i] = (len(1l), np.sum(l, axis=0))
return dic

[9]: def reduceCenters(a, b):
Reduce method to sum the result of two partial_sum methods
:param a: partial_sum {cluster_ind: (#points_a, sum(points_a))}
:param b: partial_sum {cluster_ind: (#points_b, sum(points_b))}
:return: {cluster_ind: (#points_at+#points_b, sum(points_atpoints_b))}

(continues on next page)

10.2. Hands-on 335

COMPSs Documentation, 2.9

nnn

for key in b:
if key not in a:
alkey] = blkey]
else:
alkey]
return a

[10]: @task(returns=dict)
def reduceCentersTask(*data):
reduce_value = datal[0]
for i in range(1l, len(data)):
reduce_value = reduceCenters(reduce_value, datal[i])
return reduce_value

[11]: def mergeReduce(function, data, chunk=50):

""" Apply function cumulatively to the items of data,
from left to right in binary tree structure, so as to
reduce the data to a single value.

:param function: function to apply to reduce data

:param data: List of items to be reduced

:return: result of reduce the data to a single value

while(len(data)) > 1:
dataToReduce = datal:chunk]
data = datalchunk:]
data.append(function(*dataToReduce))

return data[0]

[12]: def has_converged(mu, oldmu, epsilon, iter, maxIterations):
print("iter: " + str(iter))
print ("maxIterations: " + str(maxIterations))
if oldmu != []:
if iter < maxIterations:

(alkey]l [0] + bl[key] [0], alkey][1] + blkey] [1])

(continued from previous page)

aux = [np.linalg.norm(oldmuli] - mul[i]) for i in range(len(mu))]

distancia = sum(aux)
if distancia < epsilon * epsilon:

print("Distance_T: " + str(distancia))
return True

else:
print("Distance_F: " + str(distancia))

return False
else:
Reached the maz amount of iterations
return True

[13]: def plotKMEANS(dim, mu, clusters, data):

import pylab as plt

colors = ['b','g','r','c','m','y"', 'k']

if dim == 2 and len(mu) <= len(colors):
from matplotlib.patches import Circle
from matplotlib.collections import PatchCollection
fig, ax = plt.subplots(figsize=(10,10))
patches = []
pcolors = []

(continues on next page)

336 Chapter 10.

PyCOMPSs Notebooks

[14]:

COMPSs Documentation, 2.9

(continued from previous page)

for i in range(len(clusters)):
for key in clusters[i] .keys():
d = clusters[i] [key]
for j in d:
j =3j - 1i* len(datal0])
C = Circle((datal[i]l [j]1[0], datalil[jI1[1]), .05)
pcolors.append(colors[key])
patches.append(C)
collection = PatchCollection(patches)
collection.set_facecolor(pcolors)
ax.add_collection(collection)
x, y = zip(*mu)
plt.plot(x, y, '*', c='y', markersize=20)
plt.autoscale(enable=True, axis='both', tight=False)
plt.show()
elif dim == 3 and len(mu) <= len(colors):
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure()
ax = fig.add_subplot(111l, projection='3d')
for i in range(len(clusters)):
for key in clusters[i] .keys():
d = clusters[i] [key]
for j in d:
j =3 -1 * len(datal0])
ax.scatter(datali] [j1[0], datali]l [j1[1], datalil[jI1[2], 'o',.
—c=colors[key])
X, ¥y, 2z = zip(*mu)
for i in range(len(mu)):
ax.scatter(x[i], y[i], z[i]l, s=80, c='y', marker='D')
plt.show()
else:
print ("No representable dim or not enough colours")

10.2.3.1 MAIN

Parameters (that can be configured in the following cell): * numV: number of vectors (default: 10.000)

* dim: dimension of the points (default: 2) * k: number of centers (default: 4) * numFrag: number of fragments
(default: 16) * epsilon: convergence condition (default: 1e-10) * maxIterations: Maximum number of iterations
(default: 20)

Jmatplotlib inline
import ipywidgets as widgets
from pycompss.api.api import compss_wait_on

w_numV = widgets.IntText (value=10000) # Number of Vectors - with 1000 it is feasibley
—~to see the evolution across titerations
w_dim = widgets.IntText(value=2)

w_k = widgets.IntText(value=4)

w_numFrag = widgets.IntText(value=16)
w_epsilon = widgets.FloatText(value=1e-10)
w_maxIterations = widgets.IntText(value=20)
w_seed = widgets.IntText(value=8)

Number of Dimensions
Centers

Fragments

Convergence condition
Maz number of iterations

H R W B R R

Random seed

(continues on next page)

10.2. Hands-on 337

[14]7:

[15]:

[1]:

COMPSs Documentation, 2.9

(continued from previous page)

def kmeans(numV, dim, k, numFrag, epsilon, maxIterations, seed):
size = int(numV / numFrag)
cloudCenters = init_random(k, dim, seed) # centers to create data groups
X = [genFragment(size, k, cloudCenters, dim, mode='gauss') for _ in range(numFrag)]

mu = init_random(k, dim, seed - 1) # First centers

oldmu = []

n=20

while not has_converged(mu, oldmu, epsilon, n, maxIterations):
oldmu = mu

clusters = [cluster_points_partial (X[f], mu, f * size) for f in range(numFrag)]
partialResult = [partial_sum(X[f], clusters[f], f * size) for f in range(numFrag)]
mu = mergeReduce(reduceCentersTask, partialResult, chunk=4)
mu = compss_wait_on(mu)
mu = [mulc][1] / mulc][0] for c in mu]
while len(mu) < k:
Add new random center if onme of the centers has mo points.
indP = np.random.randint(0, size)
indF = np.random.randint (0, numFrag)
mu . append (X [indF] [indP])
m += il
clusters = compss_wait_on(clusters)
plotKMEANS (dim, mu, clusters, X)
print("--------mmm ")
print ("Result:")
print("Iterations: ", n)
print ("Centers: ", mu)

widgets.interact_manual (kmeans, numV=w_numV, dim=w_dim, k=w_k, numFrag=w_numFrag, epsilon=w_
—epsilon, maxIterations=w_maxIterations, seed=w_seed)

interactive(children=(IntText (value=10000, description='numV'), IntText(value=2, description=
—'dim'), IntText(v...

<function __main__.kmeans(numV, dim, k, numFrag, epsilon, maxIterations, seed)>

ipycompss.stop()

stk ok sk sk kb sk sk sk sk s ok sk sk ok sk sk sk ok ks ks sk sk sk ok sk sk ok sk sk sk ok sk sk ks

woksokkkkkokkkkokkk STOPPING PyCOMPSS okkokskokskkokkokkokkokkkok

stk ok sk ok sk stk kst ket s kol sk ok sk sk ok sk stk stk kol sk ok sk sk ok sk sk ok sk stk ko

Checking if any issue happened.

Warning: some of the variables used with PyCOMPSs may
have not been brought to the master.

stk ok sk sk ok sk sk kst etk s ok sk sk ok sk sk ok sk sk sk skl sk ok sk sk ok sk sk sk ks ks

10.2.4 Cholesky Decomposition/Factorization

Given a symmetric positive definite matrix A, the Cholesky decomposition is an upper triangular matrix U (with
strictly positive diagonal entries) such that:

A=UTU

import pycompss.interactive as ipycompss

338 Chapter 10. PyCOMPSs Notebooks

COMPSs Documentation, 2.9

[2]: # Start PyCOMPSs runtime with graph and tracing enabled
import os
if 'BINDER_SERVICE_HOST' in os.environ:
ipycompss.start(graph=True, trace=True,
project_xml='../xml/project.xml',
resources_xml='../xml/resources.xml')
else:
ipycompss.start (graph=True, monitor=1000, trace=True)

sk sk sk sk sk sk sk ok ok ok ok ok ok o o o ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk s ok o ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok ok ok ok
wokxkkkkkkkkkkkk PyCOMPSs Interactive sxkskkkskikkskkkxok
KKK KoK oK oK oK oK oK ok oK oK o o o o K K K K oK oK oK oK ok oK ok ok ok ok o o K K K K K oK oK oK ok ok ok ok ok ok ok ok o K K

.U ~ -
AR Nl T
T\ //
R S S
=T L
ST =T /7=
T-.<

KoK o KoK o K oK oK KK oK oK oK K oK oK oK o K oK ok K oK oK K oK oK oK K oK o K oK ok oK oK ok KK ok K oK K oK
* - Starting COMPSs runtime... *
* - Log path : /home/javier/.COMPSs/InteractiveMode_18/
* - PyCOMPSs Runtime started... Have fun! *
stk ke ok sk o ok sk ok ok sk sk sk ok sk sk e ok sk e ok sk s ok sk sk sk sk sk sk sk sk e ok sk sk ok sk sk ok sk sk sk ok sk ok

¥R K K K K K K K K X X X X X X%
13
]
]
?
]
?
]
?
oo
P A

[3]: from pycompss.api.task import task
from scipy import linalg
from scipy import random
import numpy as np
import ctypes

10.2.4.1 Task definitions

[4]: @task(returns=list)
def createBlock(BSIZE, MKLProc, diag):
import os
os.environ["MKL_NUM_THREADS"]=str (MKLProc)
block = np.array(np.random.random((BSIZE, BSIZE)), dtype=np.double,copy=False)
mb = np.matrix(block, dtype=np.double, copy=False)
mb = mb + np.transpose (mb)
if diag:
mb = mb + 2*BSIZE*np.eye(BSIZE)
return mb

Otask(returns=np.ndarray)
def potrf(A, MKLProc):

(continues on next page)

10.2. Hands-on 339

COMPSs Documentation, 2.9

from scipy.linalg.lapack import dpotrf
import os
os.environ['MKL_NUM_THREADS']=str (MKLProc)
A = dpotrf (A, lower=True) [0]

return A

Otask(returns=np.ndarray)

def

solve_triangular(A, B, MKLProc):

from scipy.linalg import solve_triangular
from numpy import transpose

import os
os.environ['MKL_NUM_THREADS']=str (MKLProc)
B = transpose(B)

B = solve_triangular(A, B, lower=True) # , trans='T’
B = transpose(B)
return B

Otask(returns=np.ndarray)

def

gemm(alpha, A, B, C, beta, MKLProc):

from scipy.linalg.blas import dgemm

from numpy import transpose

import os
os.environ['MKL_NUM_THREADS']=str (MKLProc)

B = transpose(B)
C = dgemm(alpha, A, B, c=C, beta=beta)
return C

10.2.4.2 Auxiliar functions

genMatrix(MSIZE, BSIZE, MKLProc, A):
for i in range(MSIZE):
A.append([])
for j in range(MSIZE):
A[i] .append([1)
for i in range(MSIZE):
mb = createBlock(BSIZE, MKLProc, True)
ATi] [il=mb
for j in range(i+1,MSIZE):
mb = createBlock(BSIZE, MKLProc, False)
A[i][j]=mb
A[j][1]=mb

cholesky_blocked (MSIZE, BSIZE, mkl_threads, A):
import os
for k in range(MSIZE):
Diagonal block factorization
A[k] [x] = potrf(A[k][k], mkl_threads)
Triangular systems
for i in range(k+1, MSIZE):
A[i] [k] = solve_triangular(A[k][k], A[i][k], mkl_threads)
A[k] [i] = np.zeros((BSIZE,BSIZE))
update trailing matriz
for i in range(k+1, MSIZE):
for j in range(i, MSIZE):

(continued from previous page)

(continues on next page)

[6]: def
[6]: def
340

Chapter 10.

PyCOMPSs Notebooks

[7]:

[7]:

[8]:

COMPSs Documentation, 2.9

(continued from previous page)

A[j1[i] = gemm(-1.0, A[j]1[x], A[i][k], A[j1[i], 1.0, mkl_threads)

return A

MAIN Code

Parameters (that can be configured in the following cell): * MSIZE: Matrix size (default: 8) * BSIZE: Block size

(default: 1024) * mkl threads: Number of MKL threads (default: 1)

import ipywidgets as widgets
from pycompss.api.api import compss_barrier
import time

w_MSIZE = widgets.IntText(value=8)
w_BSIZE = widgets.IntText(value=1024)
w_mkl_threads = widgets.IntText(value=1)

def cholesky(MSIZE, BSIZE, mkl_threads):
Generate de matriz
startTime = time.time()

Generate supermatric

A =11

res = []

genMatrix(MSIZE, BSIZE, mkl_threads, A)
compss_barrier()

initTime = time.time() - startTime
startDecompTime = time.time()

res = cholesky_blocked(MSIZE, BSIZE, mkl_threads, A)

compss_barrier()

decompTime = time.time() - startDecompTime
totalTime = decompTime + initTime

print("---------- Elapsed Times ---------- ")
print ("initT:{}".format(initTime))

print ("decompT:{}".format(decompTime))
print("totalTime:{}".format (totalTime))

widgets.interact_manual(cholesky, MSIZE=w_MSIZE, BSIZE=w_BSIZE, mkl_threads=w_mkl_threads)

interactive(children=(IntText(value=8, description='MSIZE'), IntText(value=1024, description=

—'BSIZE'), IntText...

<function __main__.cholesky(MSIZE, BSIZE, mkl_threads)>

ipycompss.stop()

steokok ok ok ok sk sk sk sk sk ok sk ok sk ok ok sk sk sk sk sk ok sk sk sk ok sk ok ok sk sk sk sk sk ok sk sk sk ok sk sk sk sk sk sk ok ok ok ok ok k
sokkkkkkkkokkkkkk STOPPING PyCOMPSs #okskskskskskskskskoskoskskokok ok k ok
stk sk sk sk sk sk sk sk sk sk ok o o o ok ok ok ok ok sk sk sk sk sksk sk sk sk sk sk sk ok ok ke skok ok sk sk sk sk sk sk sk sk sk sk sk sk ke ke ok
Checking if any issue happened.

Warning: some of the variables used with PyCOMPSs may

have not been brought to the master.
3k 5k 3k 5k >k 3k >k 5k 3k 3k 5k %k 5K >k 3k 5k 3k 5k >k 5k >k 3k 5k 5k 5k >k 5k >k 3k >k 5k 5k >k 5k %k 3k >k 3k 5k >k 5k >k 5k >k %k 5k %k >k %k >k k k k k

10.2. Hands-on

341

[1]:

[2]:

[3]:

[4]:

[5]:

COMPSs Documentation, 2.9

10.2.5 Wordcount Exercise
10.2.5.1 Sequential version
import os

def read_file(file_path):
""" Read a file and return a list of words.
:param file_path: file's path
:return: list of words
mnimnn
data = []
with open(file_path, 'r') as f:
for line in f:
data += line.split()
return data

def wordCount(data):
"r-Construct a frequency word dictorionary from a list of words.
:param data: a list of words
:return: a dictionary where key=word and value=#appearances
partialResult = {}
for entry in data:
if entry in partialResult:
partialResult [entry] += 1
else:
partialResult[entry] = 1
return partialResult

def merge_two_dicts(dicl, dic2):
""" Update a dictionary with another dictionary.
:param dicl: first dictionary
:param dic2: second dictionary
:return: dicl+=dic2
for k in dic2:
if k in dicl:
dici[k] += dic2[k]
else:
dic1[k] = dic2[k]
return dicl

Get the dataset path
pathDataset = os.getcwd() + '/dataset'

Read file's content execute a wordcount on each of them
partialResult = []
for fileName in os.listdir(pathDataset):
file_path = os.path.join(pathDataset, fileName)
data = read_file(file_path)
partialResult.append(wordCount (data))

Accumulate the partial results to get the final result.
result = {}
for partial in partialResult:

(continues on next page)

342 Chapter 10.

PyCOMPSs Notebooks

COMPSs Documentation, 2.9

(continued from previous page)

result = merge_two_dicts(result, partial)

[6]: print("Result:")
from pprint import pprint
pprint (result)
print ("Words: {}".format(sum(result.values())))

Result:
{'Adipisci': 227,
'Aliquam': 233,

'Amet': 207,
'Consectetur': 201,
'Dolor': 198,
'Dolore': 236,
'Dolorem': 232,
'Eius': 251,
'Est': 197,
'Etincidunt': 232,
'Ipsum': 228,
'Labore': 229,
'Magnam': 195,
'Modi': 201,
'Neque': 205,
'Non': 226,
'Numquam': 253,
'Porro': 205,

'Quaerat': 217,
'Quiquia': 212,
'Quisquam': 214,
'Sed': 225,
'Sit': 220,
'Tempora': 189,
'Uut': 217,
'Velit': 218,
'Voluptatem': 235,
'adipisci': 1078,
'aliquam': 1107,

'amet': 1044,
'consectetur': 1073,
'dolor': 1120,

'dolore': 1065,
'dolorem': 1107,
'eius': 1048,
'est': 1101,
'etincidunt': 1114,
'ipsum': 1061,
'labore': 1070,
'magnam': 1096,
'modi': 1127,
'neque': 1093,
'non': 1099,
'numquam': 1094,
'porro': 1101,
'quaerat': 1086,
'quiquia': 1079,
'quisquam': 1144,

(continues on next page)

10.2. Hands-on 343

[1]:

[2]:

[3]:

[4]:

[5]:

COMPSs Documentation, 2.9

(continued from previous page)
'sed': 1109,
'sit': 1130,
'tempora': 1064,
'ut': 1070,
'velit': 1105,
'voluptatem': 1121}
Words: 35409

10.2.6 Wordcount Solution

10.2.6.1 Complete version

import os

import pycompss.interactive as ipycompss
from pycompss.api.task import task

from pycompss.api.parameter import *

if 'BINDER_SERVICE_HOST' in os.environ:
ipycompss.start(graph=True, trace=True, debug=False,
project_xml='../xml/project.xml’,
resources_xml='../xml/resources.xml')
elliser:
ipycompss.start (graph=True, monitor=1000, trace=True, debug=False)

sk ok ok ok ok ok ok sk ok ok ok ok ok ok s ok ok sk ok ok sk sk ok ok s ok ok ok sk ok ok s ok ok sk ok ok ok sk ok ok sk ok ok sk ok ok sk ok okok sk ok ok
fkkkkkkkkkkkkkk PyCOMPSs Interactive skskskskskskskoskskokkokkkkk
ke sk ok ok ok ok ok ok ok sk sk ok ok s ok ok sk sk ok sk sk sk ok sk sk ok sk sk sk sk sk sk ok sk sk ok sk sk ok ok sk sk ok sk sk ok sk sk ok ok sk ok ok

* ST e——. *
* :) l____\ /oo N\ x
* 7T -\ /.- 7T - G I
x>) ! < / ___/ ____ / %
*(- -)2 I P VARVAR
e P P (. /__/ *
* () o .- *
* - --- -~ -~} *
* T -t- =T\l =T Nt *
x A\ \ LT x
x AL/ x
x S e L\ x
* = e *
* LT =7 /- *
* /T o= 7 Y- T *
* o< *
stk ok sk sk ok sk sk sk ekl sk ksl sk ok sk sk sk sk sk ksl sk ok sk sk ok sk sk sk ks sk sk
* - Starting COMPSs runtime... *
* - Log path : /home/javier/.COMPSs/InteractiveMode_19/
* - PyCOMPSs Runtime started... Have fun! *

>k >k 3K 3K 3K 3K 3k 5k 5k 5k 5k 5k 5k 5k 5k %k 3k 3K 3k 3k 3k 3k 5k 5k 5k 5k %k %K K 3K 3K 5K 5k 3k %k 5k 5k 5k %k %k X K 3K 5k 5k 5k %k %k %k >k >k k %k %

344 Chapter 10. PyCOMPSs Notebooks

COMPSs Documentation, 2.9

[6]: Otask(returns=list)
def read_file(file_path):
""" Read a file and return a list of words.
:param file_path: file's path
:return: list of words
nmnn
data = []
with open(file_path, 'r') as f:
for line in f:
data += line.split()
return data

[7]: @task(returns=dict)
def wordCount(data):

"-Construct a frequency word dictorionary from a list of words.

:param data: a list of words
:return: a dictionary where key=word and value=#appearances
mnimn
partialResult = {}
for entry in data:
if entry in partialResult:
partialResult[entry] += 1
else:
partialResult [entry] = 1
return partialResult

[8]: @task(returns=dict, priority=True)
def merge_two_dicts(dicl, dic2):
""" Update a dictionary with another dictionary.
:param dicl: first dictionary
:param dic2: second dictionary
:return: dicl+=dic2
for k in dic2:
if k in dicl:
dic1[k] += dic2[k]
else:
dici[k] = dic2[k]
return dicl

[9]: from pycompss.api.api import compss_wait_on

Get the dataset path
pathDataset = os.getcwd() + '/dataset'

Read file's content exzecute a wordcount on each of them
partialResult = []
for fileName in os.listdir(pathDataset):
file_path = os.path.join(pathDataset, fileName)
data = read_file(file_path)
partialResult.append(wordCount (data))

Accumulate the partial results to get the final result.
result = {}
for partial in partialResult:

result = merge_two_dicts(result, partial)

(continues on next page)

10.2. Hands-on

345

[10]:

COMPSs Documentation,

2.9

Wait for result
result = compss_wait_on(result)

Found task: read_file
Found task: wordCount
Found task: merge_two_dicts

print ("Result:")
from pprint import pprint

pprint (result)

print ("Words: {}".format(sum(result.values())))

Result:

{'Adipisci': 227,

'Aliquam': 233,

'Amet': 207,
'Consectetur': 201,
'Dolor': 198,
'Dolore': 236,
'Dolorem': 232,
'Eius': 251,
'Est': 197,
'Etincidunt': 232,
'Ipsum': 228,
'Labore': 229,
'Magnam': 195,
'Modi': 201,
'Neque': 205,
'Non': 226,

'Numquam': 253,
'Porro': 205,
'Quaerat': 217,
'Quiquia': 212,
'Quisquam': 214,
'Sed': 225,
'Sit': 220,
'Tempora': 189,
'ut': 217,
'Velit': 218,

'Voluptatem': 235,
'adipisci': 1078,

'aliquam': 1107,
'amet': 1044,

'consectetur': 1073,

'dolor': 1120,
'dolore': 1065,
'dolorem': 1107,
'eius': 1048,
'est': 1101,

'etincidunt': 1114,

'"ipsum': 1061,
'labore': 1070,
'magnam': 1096,

(continued from previous page)

'modi': 1127,
'neque': 1093,
'non': 1099,
(continues on next page)
346 Chapter 10. PyCOMPSs Notebooks

[11]:

[1]:

[2]:

[3]:

[4]:

[5]:

COMPSs Documentation, 2.9

'numquam': 1094,
'porro': 1101,
'quaerat': 1086,
'quiquia': 1079,
'quisquam': 1144,
'sed': 1109,
'sit': 1130,
'tempora': 1064,
'ut': 1070,
'velit': 1105,
'voluptatem': 1121}
Words: 35409

ipycompss.stop()

sk sk o ok sk sk o ok sk sk ok o sk sk sk sk ke sk sk sk sk ok ok sk sk sk ok sksk sk s ok sk sk sk ok sk ok ok sksk ok ok ok

sokrkkkkokkkkkkk STOPPING PyCOMPSS #okkkskkokkokkokkokkokokkok

sk sk o o o sk ok ok o sk ok ok o sk ok ok o o sk sk ok sk o ok sk ok sk o ok sk sk sk o ok sk sk ok o ok sk ok ok o sk sk ok ok o ok

Checking if any issue happened.

Warning: some of the variables used with PyCOMPSs may
have not been brought to the master.

sk ks ok sk sk o ok sk sk ok sk ok sk sk sk sk ok sk sk sk sk ok sksk sk ok sksksk sk ok sk sk sk ok sksk ok ok skskok ok ok

10.2.7 Wordcount Solution (With reduce)
10.2.7.1 Complete version

import os

import pycompss.interactive as ipycompss

from pycompss.api.task import task

from pycompss.api.parameter import *

if 'BINDER_SERVICE_HOST' in os.environ:

ipycompss.start(graph=True, trace=True, debug=False,

project_xml='../xml/project.xml’',

resources_xml='../xml/resources.xml')

else:

(continued from previous page)

ipycompss.start (graph=True, monitor=1000, trace=True, debug=False)

sk sk sk sk sk sk sk ok ok ok ok ok o o o o o ok sk sk sk sk sk sk sk sk sk sk sk sk sk o ok ok ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok ok ok
wokxkkkkkokkkkkkk PyCOMPSs Interactive sxkskkkskkkskkskkkxk
KKK KoK oK oK oK oK oK oK oK oK o o o o K K KK KoK oK oK ok ok ok ok ok oK o o K K K K K oK ok ok ok ok ok ok ok ok ok ok o K K

¥ X X X X X X X ¥
~
I
I
~
|
|
|
. |
~
~
¥ X K X X X X X ¥

T\ T

(continues on next page)

10.2. Hands-on

347

[6]:

[7]:

[8]:

COMPSs Documentation, 2.9

* AR AN *
* T /7 *
* - T T LN\ *
* -~ B *
* R - Y At *
* /_"_ _ - - T-_ *
* o< *
stk sk sk ok sk stk kst etk sk sk sk ok sk sk ok sk st kst ket sk ok sk sk ok sk sk sk stk ko
* - Starting COMPSs runtime... *
* - Log path : /home/javier/.COMPSs/InteractiveMode_20/
* - PyCOMPSs Runtime started... Have fun! *

>k >k >k 3K 3K 3k 3k 5k 5k 3k 3k 5k 5k 5k %k %k >k 3k 3k 3k 3k 3k %k 3k >k 5k 5k % K 3K 3k 5K 5k 3k %k %k %k >k %k %k % %K 3K 3k 5k 5k %k %k %k %k >k k % %

Otask(returns=list)
def read_file(file_path):
""" Read a file and return a list of words.
:param file_path: file's path
:return: list of words
nnn
data = []
with open(file_path, 'r') as f:
for line in f:
data += line.split()
return data

Otask(returns=dict)
def wordCount(data):

(continued from previous page)

"-Construct a frequency word dictorionary from a list of words.

:param data: a list of words

:return: a dictionary where key=word and value=#appearances

nnn

partialResult = {}
for entry in data:
if entry in partialResult:
partialResult[entry] += 1
else:
partialResult [entry] = 1
return partialResult

Otask(returns=dict, priority=True)
def merge_dicts(*dictionaries):
import queue
q = queue.Queue()
for i in dictionaries:

q.put (i)
while not q.empty():
x = q.get()
if not q.empty():
y = q.get()
for k in y:
if k in x:
x[k] += ylk]
else:
x[k] = y[k]
q.put(x)

(continues on next page)

348

Chapter 10. PyCOMPSs Notebooks

[9]:

[10]:

COMPSs Documentation, 2.9

return(x)

from pycompss.api.api import compss_wait_on

Get the dataset path
pathDataset = os.getcwd() + '/dataset'

Construct a list with the file's paths from the dataset

partialResult =

for fileName in os.listdir(pathDataset):
p = os.path.join(pathDataset, fileName)
data=read_file(p)
partialResult.append(wordCount (data))

Accumulate the partial results to get the final result.
result=merge_dicts (*partialResult)

(1

Wait for result

result = compss_wait_on(result)

Found task: read_file
Found task: wordCount
Found task: merge_dicts

print ("Result:")
from pprint import pprint

pprint (result)

print ("Words: {}".format(sum(result.values())))

Result:

{'Adipisci': 227,

'"Aliquam': 233,

"Amet': 207,
'Consectetur': 201,
'Dolor': 198,
'Dolore': 236,
'Dolorem': 232,
'Eius': 251,
'Est': 197,
'Etincidunt': 232,
'Ipsum': 228,
'Labore': 229,
'Magnam': 195,
'Modi': 201,
'Neque': 205,
'Non': 226,

'Numquam': 253,
'Porro': 205,
'Quaerat': 217,
'Quiquia': 212,
'Quisquam': 214,
'Sed': 225,
'Sit': 220,
'Tempora': 189,
'Ut': 217,
'Velit': 218,

(continued from previous page)

(continues on next page)

10.2. Hands-on

349

[11]7:

COMPSs Documentation, 2.9

'Voluptatem': 235,
'adipisci': 1078,
'aliquam': 1107,
'amet': 1044,
'consectetur': 1073,
'dolor': 1120,
'dolore': 1065,
'dolorem': 1107,
'eius': 1048,
'est': 1101,
'etincidunt': 1114,
'"ipsum': 1061,
'labore': 1070,
'magnam': 1096,
'modi': 1127,
'neque': 1093,
'non': 1099,
'numquam': 1094,
'porro': 1101,
'quaerat': 1086,
'quiquia': 1079,
'quisquam': 1144,
'sed': 1109,
'sit': 1130,
'tempora': 1064,
'ut': 1070,
'velit': 1105,
'voluptatem': 1121}
Words: 35409

ipycompss.stop()

okokokokokok ok sk ok ko ook kokokokok sk sk ko sk okokokokokokskok sk sk skokkokokokokokok sk ok sk ok ok ok ok ok ok ok

sokkskskkkokkokkkk STOPPING PyCOMPSs okskskskskskskskskoskokokokokok ok ok

stk ko ok ook ok sk sk sk ok ok ok sk sk ok ok sk ok sk sk sk ok sk ok ok sk ko ok sk sk sk sk sk ok sk sk sk sk ok ok ok sk sk sk sk ok ok ok ok ok k

Checking if any issue happened.

Warning: some of the variables used with PyCOMPSs may
have not been brought to the master.

stk sk ok ok ok sk sk sk sk ok ok ok ok sk ok ok sk sk sk sk sk ok sk sk ok sk ok ok sk sk sk sk sk ok sk sk sk ok sk sk sk sk sk sk sk ok ok ko k

10.3 Demos

Here you will find the demonstration notebooks used in the tutorials.

(continued from previous page)

350

Chapter 10. PyCOMPSs Notebooks

[1]:

[2]:

[3]:

[4]:

[5]:

COMPSs Documentation, 2.9

10.3.1 Accelerating parallel code with PyCOMPSs and Numba

10.3.1.1 Demo Supercomputing 2019

What is mandelbrot?

The mandelbrot set is a fractal, which is plotted on the complex plane. It shows how intrincate can be formed
from a simple equation.

It is generated using the algorithm:

Zn+1 = Z?L + A (].)
(2)

Where Z and A are complex numbers, and n represents the number of iterations.

First, import time to measure the elapsed execution times and create an ordered dictionary to keep all measures
-> we are going to measure and plot the performance with different conditions!

import time
from collections import OrderedDict
times = OrderedDict ()

And then, all required imports

from numpy import NaN, arange, abs, array

Mandelbrot set implementation:

def mandelbrot(a, max_iter):
z =0
for n in range(l, max_iter):
zZ = z**x2 + a
if abs(z) > 2:
return n
return NaN

def mandelbrot_set(y, X, max_iter):
Z = [0 for _ in range(len(X))]
for ix, x in enumerate(X):
Z[ix] = mandelbrot(x + 1j * y, max_iter)
return Z

Main function to generate the mandelbrot set. It splits the space in vertical chunks, and calculates the mandelbrot
set of each one, generating the result Z.

def run_mandelbrot(X, Y, max_iter):
st = time.time()
Z = [[] for _ in range(len(Y))]
for iy, y in enumerate(Y):
Z[iy] = mandelbrot_set(y, X, max_iter)
elapsed = time.time() - st
print ("Elapsed time (s): {}".format(elapsed))
return Z, elapsed

The following function plots the fractal inline (the coerced parameter ** is used to set NaN in coerced elements
within Z).

10.3. Demos 351

[6]:

[7]1:

[8]:

[9]:

COMPSs Documentation, 2.9

Jmatplotlib inline
def plot_fractal(Z, coerced):
if coerced:

Z = [[NaN if ¢ == -2x*63 else c for c¢ in row] for row in Z]
import matplotlib.pyplot as plt
Z = array(Z)
plt.imshow(Z, cmap='plasma')
plt.show()

Define a benchmarking function:

def generate_fractal(coerced=False):
X = arange(-2, .5, .01)
Y = arange(-1.0, 1.0, .01)
max_iterations = 2000
Z, elapsed = run_mandelbrot(X, Y, max_iterations)
plot_fractal(Z, coerced)
return elapsed

Run the previous code sequentially:

times['Sequential'] = generate_fractal()

Elapsed time (s): 53.43384051322937
1]

25

75
100
125
150

175

o 50 100 150 200

10.3.1.2 Paralellization with PyCOMPSs

After analysing the code, each mandelbrot set can be considered as a task, requiring only to decorate the
mandelbrot_set function. It is interesting to observe that all sets are independent among them, so they can
be computed completely independently, enabling to exploit multiple resources concurrently.

In order to run this code with we need first to start the COMDPSs runtime:

import os
import pycompss.interactive as ipycompss
if 'BINDER_SERVICE_HOST' in os.environ:
ipycompss.start(project_xml='../xml/project.xml’',
resources_xml='../xml/resources.xml')
else:
ipycompss.start(graph=False, trace=True, monitor=1000)

352 Chapter 10. PyCOMPSs Notebooks

COMPSs Documentation, 2.9

okofok skokok ko ok ok skokok skokokskokskokok skokok ok skokok skokok ok skokok skokok ok ook ok ok ok ok
*kkkkkkkkokkokkkk PyCOMPSs Interactive sxskskskskskokskokokokkkkk
stk ok ok ok sk ok sk sk ok ok sk ok ok sk sk sk ok ok sk ok ok sk sk sk ok ok sk ok sk sk sk sk ok ok sk ok sk sk sk sk ok sk sk ok ok sk ok ok ok ok ok

AN \ o7
T\ /7
T S /4
-~ N
=T =T A&
/o~ =7 - T-l
T-.<
ok Kok oK oK KK ok Kok K oK o oK ok ok K ok K oK oK ok oK ok K ok ok ok ok K ok o oK ok ok K ok K ok ok o ok ok K ok K
* - Starting COMPSs runtime... *
* - Log path : /home/javier/.COMPSs/InteractiveMode_21/
* - PyCOMPSs Runtime started... Have fun! *
3k 5k 3k 5k >k 3k >k 5k 5k 3k 5k >k 3k >k 3k 5k 5k 5k >k 5k >k 5k 5k 5k 5k >k 5k >k 3k >k 5k 5k >k 5k %k 5k >k 5k 5k >k 5k >k 5k >k %k 5k %k >k %k >k k k k k

¥R K K K K K K K K X X X X X X%
t
]
I
I
]
?
I
2
]
?
ST
¥R K K K K K K K K X X X X X %

It is necessary to decorate the mandelbrot_set function with the @task decorator.

Note that the mandelbrot_set function returns a list of elements.

[10]: from pycompss.api.task import task

[11]: @task(returns=list)
def mandelbrot_set(y, X, max_iter):
Z = [0 for _ in range(len(X))]
for ix, x in enumerate(X):
Z[ix] = mandelbrot(x + 1j * y, max_iter)
return Z

And finally, include the synchronization of Z with compss_wait_on.

[12]: from pycompss.api.api import compss_wait_on

[13]: def run_mandelbrot(X, Y, max_iter):
st = time.time()
Z = [[] for _ in range(len(Y))]
for iy, y in enumerate(Y):
Z[iy] = mandelbrot_set(y, X, max_iter)
Z = compss_wait_on(Z)
elapsed = time.time() - st
print ("Elapsed time (s): {}".format(elapsed))
return Z, elapsed

Run the benchmark with PyCOMPSs:

[14]: times['PyCOMPSs'] = generate_fractal()

Found task: mandelbrot_set
Elapsed time (s): 28.4622004032135

10.3. Demos 353

[15]:

[16]:

[177:

COMPSs Documentation, 2.9

5

100

125

1540

175

o 50 100 150 200

10.3.1.3 Accelerating the tasks with Numba

To this end, it is necessary to either use: 1. the Numba’s @jit decorator under the PyCOMPSs @task decorator

2. or define the numba=True within the @task decorator.

First, we decorate the inner function (mandelbrot) with @jit since it is also a target function to be optimized

with Numba.

from numba import jit

Qjit
def mandelbrot(a, max_iter):
z =0
for n in range(l, max_iter):
Z = z**x2 + a
if abs(z) > 2:
return n
return NaN # Nal is coerced by Numba

Option 1 - Add the @jit decorator explicitly under @task decorator

@task(returns=list) @jit def mandelbrot set(y, X, max_iter): Z = [0 for _ in range(len(X))] for ix, x in enumer-

ate(X): Z[ix] = mandelbrot(x + 1j * y, max_iter) return Z
Option 2 - Add the numba=True flag within @task decorator

Otask(returns=1list, numba=True)
def mandelbrot_set(y, X, max_iter):
Z = [0 for _ in range(len(X))]
for ix, x in enumerate(X):
Z[ix] = mandelbrot(x + 1j * y, max_iter)
return Z

Run the benchmark with Numba:

times['PyCOMPSs + Numba'] = generate_fractal (coerced=True)

Found task: mandelbrot_set
Elapsed time (s): 8.703550577163696

354

Chapter 10. PyCOMPSs Notebooks

COMPSs Documentation, 2.9

125

1540

175

50

Plot the times:

[18]: import matplotlib.pyplot as plt
plt.bar(*¥zip(*times.items()))
plt.show()

Sequential PyCOMPSs PyCOMPSs + Numba

Stop COMPSs runtime

[19]: ipycompss.stop()

sk sk o o o ok sk sk ok o sk sk ok o sk sk ok s sk sk ok sk o sk sk sk sk o ok sk sk sk o ok sk sk sk o ok sk ok o e sk sk sk ok e ok

wokxokkckkkokkkkokkk STOPPING PyCOMPSS okkokskokskokokkokkokkokkokok

sk sk o ok sk sk ok o ok sk sk sk o sk sk ok s ok sk sk sk ok sk sk sk ke ok sk sk sk s ok sk sk sk sk ok ok sk sk ok ok sk sk ok ok ok

Checking if any issue happened.

Warning: some of the variables used with PyCOMPSs may
have not been brought to the master.

sk sk s o ke ok sk sk ok o sk sk ok o sk sk ok s ok sk ok sk ke ok sk sk sk e ok sk sk sk e sk sk ok o ok sk sk o ok sk sk ok ek ok

Hint: These notebooks can be used within MyBinder, with the PyCOMPSs Player, within Docker, within
Virtual Machine (recommended for Windows) provided by BSC, or locally.

Prerequisites
e Using MyBinder:

— Open NONELE!

10.3. Demos 355

https://mybinder.org/v2/gh/bsc-wdc/notebooks/master?urlpath=/tree/home/jovyan

COMPSs Documentation, 2.9

Caution: Sometimes it may take a while to deploy the COMPSs infrastructure.

Using PyCOMPSs Player:

— pycompss-player (see Requirements and Installation)
Using Docker:

— Docker

— Git
Using Virtual Machine:

— VirtualBox
For local execution:

— Python 2 or 3

— Install COMPSs requirements described in Dependencies.

— Install COMPSs (See Building from sources)

— Jupyter (with the desired ipykernel)

— ipywidgets (only for some hands-on notebooks)

— numpy (only for some notebooks)

— dislib (only for some notebooks)

— numba (only for some notebooks)

— Git
Instructions

e Using MyBinder:
Just explore the folders and run the examples (they have the same structure as this documen-
tation).
e Using pycompss-player:

Check the pycompss-player usage instructions (see Usage)
Get the notebooks:

$ git clone https://github.com/bsc-wdc/notebooks.git

e Using Docker:
Run in your machine:

$ git clone https://github.com/bsc-wdc/notebooks.git

$ docker pull compss/compss:2.7

$ # Update the path to the notebooks path in the next command before running,
—1t

$ docker run --name mycompss -p 8888:8888 -p 8080:8080 -v /PATH/TO/notebooks:/
—home/notebooks -itd compss/compss:2.7

$ docker exec -it mycompss /bin/bash

Now that docker is running and you are connected:

$ cd /home/notebooks

$ /etc/init.d/compss-monitor start

$ jupyter-notebook --no-browser --allow-root --ip=172.17.0.2 --NotebookApp.
—token=

From local web browser:

Open COMPSs monitor: http://localhost:8080/compss-monitor/index.zul
Open Jupyter notebook interface: http://localhost:8888/

e Using Virtual Machine:
— Download the OVA from: https://www.bsc.es/research-and-development /software-and-apps/
software-list /comp-superscalar /downloads (Look for Virtual Appliances section)
— Import the OVA from VirtualBox
— Start the Virtual Machine
x User: compss
* Password: compss2019
— Open a console and run:

356 Chapter 10. PyCOMPSs Notebooks

https://www.bsc.es/research-and-development/software-and-apps/software-list/comp-superscalar/downloads
https://www.bsc.es/research-and-development/software-and-apps/software-list/comp-superscalar/downloads

COMPSs Documentation, 2.9

$ git clone https://github.com/bsc-wdc/notebooks.git
$ cd notebooks

$ /etc/init.d/compss-monitor start

$ jupyter-notebook

— Open the web browser:

* Open COMPSs monitor: http://localhost:8080/compss-monitor/index.zul
* Open Jupyter notebook interface: http://localhost:8888/

e Using local installation
— Get the notebooks and start jupyter

$ git clone https://github.com/bsc-wdc/notebooks.git
$ cd notebooks

$ /etc/init.d/compss-monitor start

$ jupyter-notebook

— Then

* Open COMPSs monitor: http://localhost:8080/compss-monitor/index.zul
* Open Jupyter notebook interface: http://localhost:8888/
* Look for the application.ipynb of interest.

Important: It is necessary to RESTART the python kernel from Jupyter after the execution of any
notebook.

Troubleshooting
e ISSUE 1: Cannot connect using docker pull.
REASON: The docker service is not running:

$ # Error messsage:

$ Cannot connect to the Docker daemon at unix:///var/run/docker.sock. Is the
—docker daemon running?

$ # SOLUTION: Restart the docker service:

$ sudo service docker start

e ISSUE 2: The notebooks folder is empty or contains other data using docker.
REASON: The notebooks path in the docker run command is wrong.

$ # Remove the docker instance and reinstantiate with the appropriate,
—notebooks path

$ exit

$ docker stop mycompss

$ docker rm mycompss

$ # Pay attention and UPDATE: /PATH/TO in the next command

$ docker run --name mycompss -p 8888:8888 -p 8080:8080 -v /PATH/TO/notebooks:/
—home/notebooks -itd compss/compss-tutorial:2.7

$ # Continue as normal

e ISSUE 3: COMPSs does not start in Jupyter.
REASON: The python kernel has not been restarted between COMPSs start, or some processes
from previous failed execution may exist.

$ # SOLUTION: Restart the python kernel from Jupyter and check that there arey
—no COMPSs' python/java processes Tunning.

e ISSUE 4: Numba is not working with the VM or Docker.
REASON: Numba is not installed in the VM or docker

10.3. Demos 357

COMPSs Documentation, 2.9

$ # SOLUTION: Install Numba in the VM/Docker

$ # Open a console in the VM/Docker and follow the next steps.
$ # For Python 2:

$ sudo python2 -m pip install numba

$ # For Python 3:

$ sudo python3 -m pip install numba

e ISSUE 5: Matplotlib is not working with the VM or Docker.
REASON: Matplotlib is not installed in the VM or docker

$ # SOLUTION: Install Matplotlib <in the VM/Docker

$ # Open a console in the VM/Docker and follow the next steps.
$ # For Python 2:

$ sudo python2 -m pip install matplotlib

$ # For Python 3:

$ sudo python3 -m pip install matplotlib

Contact support-compss@bsc.es

358 Chapter 10. PyCOMPSs Notebooks

mailto:support-compss@bsc.es

Chapter 11

Troubleshooting

This section provides answers for the most common issues of the execution of COMPSs applications and its known
limitations.

For specific issues not covered inthis section, please do not hesitate to contact us at: support-compss@bsc.es .

11.1 How to debug

When an error/exception happens during the execution of an application, the first thing that users must do is to
check the application output:

e Using runcompss the output is shown in the console.
e Using enqueue_compss the output is in the compss-<JOB_ID>.out and compss-<JOB_ID>.err

If the error happens within a task, it will not appear in these files. Users must check the log folder in order to find
what has failed. The log folder is by default in:

e Using runcompss: $HOME/.COMPSs/<APP_NAME>_XX (where XX is a number between 00 and 99, and increases
on each run).
e Using enqueue_compss: $HOME/.COMPSs/<JOB_ID>

This log folder contains the jobs folder, where all output/errors of the tasks are stored. In particular, each task
produces a JOB<TASK_NUMBER>_NEW.out and JOB<TASK_NUMBER>_NEW.err files when a task fails.

Tip: If the user enables the debug mode by including the -d flag into runcompss or enqueue_compss command,
more information will be stored in the log folder of each run easing the error detection. In particular, all output
and error output of all tasks will appear within the jobs folder.

In addition, some more log files will appear:

e runtime.log
e pycompss.log (only if using the Python binding).
e pycompss.err (only if using the Python binding and an error in the binding happens.)
® resources.log
e workers folder. This folder will contain four files per worker node:
— worker_<MACHINE_NAME>.out
— worker _<MACHINE_NAME>.err
— binding_worker <MACHINE_NAME>.out
— binding_worker_ <MACHINE_NAME>.err

As a suggestion, users should check the last lines of the runtime.log. If the file-transfers or the tasks are failing
an error message will appear in this file. If the file-transfers are successfully and the jobs are submitted, users
should check the jobs folder and look at the error messages produced inside each job. Users should notice that if
there are RESUBMITTED files something inside the job is failing.

359

mailto:support-compss@bsc.es

COMPSs Documentation, 2.9

If the workers folder is empty, means that the execution failed and the COMPSs runtime was not able to retrieve the
workers logs. In this case, users must connect to the workers and look directly into the worker logs. Alternatively,
if the user is running with a shared disk (e.g. in a supercomputer), the user can define a shared folder in the
--worker_working_directory=/shared/folder where a tmp_XXXXXX folder will be created on the application
execution and all worker logs will be stored.

Tip: When debug is enabled, the workers also produce log files which are transferred to the master when
the application finishes. These log files are always removed from the workers (even if there is a failure to avoid
abandoning files). Consequently, it is possible to disable the removal of the log files produced by the
workers, so that users can still check them in the worker nodes if something fails and these logs are not transferred
to the master node. To this end, include the following flag into runcompss or enqueue_compss:

--keep_workingdir

Please, note that the workers will store the log files into the folder defined by the --worker_working_directory,
that can be a shared or local folder.

Tip: If segmentation fault occurs, the core dump file can be generated by setting the following flag into runcompss
or enqueue_compss:

--gen_coredump

The following subsections show debugging examples depending on the choosen flavour (Java, Python or C/C++).

11.1.1 Java examples

11.1.1.1 Exception in the main code

TODO

Missing subsection

11.1.1.2 Exception in a task

TODO

Missing subsection

11.1.2 Python examples

11.1.2.1 Exception in the main code

Consider the following code where an intended error in the main code has been introduced to show how it can be
debugged.

from pycompss.api.task import task

Otask(returns=1)

(continues on next page)

360 Chapter 11. Troubleshooting

COMPSs Documentation, 2.9

(continued from previous page)

def increment(value):
return value + 1

def main():
initial_value = 1
result = increment(initial_value)

result = result + 1 # Try to use result without synchronizing it: Error

print ("Result: " + str(result))

if __name__=='__main__

main()

When executed, it produces the following output:

$ runcompss error_in_main.py

[INFO] Inferred PYTHON language

[INFO] Using default location for project file: /opt/COMPSs//Runtime/configuration/xml/
—projects/default_project.xml

[INFO] Using default location for resources file: /opt/COMPSs//Runtime/configuration/xml/
—resources/default_resources.xml

[INFO] Using default execution type: compss

WARNING: COMPSs Properties file is null. Setting default values
L(377) API] - Starting COMPSs Runtime v2.7 (build 20200519-1005.
—r6093e5ac94d67250e097a6fad9d3ec00d676feb¢)
[ERROR]: An exception occurred: unsupported operand type(s) for +: 'Future' and 'int'
Traceback (most recent call last):
File "/opt/COMPSs//Bindings/python/2/pycompss/runtime/launch.py", line 204, in compss_main
execfile (APP_PATH, globals()) # MAIN EXECUTION
File "error_in_main.py", line 16, in <module>
main()
File "error_in_main.py", line 11, in main
result = result + 1 # Try to use result without synchronizing it: Error
TypeError: unsupported operand type(s) for +: 'Future' and 'int'
[ERRMGR] - WARNING: Task 1(Action: 1) with name error_in_main.increment has been cancelled.
[ERRMGR] - WARNING: Task canceled: [[Task id: 1], [Status: CANCELED], [Core id: 0],,
— [Priority: false], [NumNodes: 1], [MustReplicate: false], [MustDistribute: false], [error_
—in_main.increment (INT_T)]]
[(3609) API] - Execution Finished

Error running application

It can be identified the complete trackeback pointing where the error is, and the reason. In this example, the
reason is TypeError: unsupported operand type(s) for +: 'Future' and 'int' since we are trying to use
an object that has not been synchronized.

Tip: Any exception raised from the main code will appear in the same way, showing the traceback helping to
idenftiy the line which produced the exception and its reason.

11.1. How to debug 361

COMPSs Documentation, 2.9

11.1.2.2 Exception in a task

Consider the following code where an intended error in a task code has been introduced to show how it can be
debugged.

from pycompss.api.task import task
from pycompss.api.api import compss_wait_on

Otask(returns=1)
def increment(value):
return value + 1 # walue is an string, can not add an int: Error

def main():
initial_value = "1" # the <nttial value is a string instead of an integer
result = increment(initial_value)
result = compss_wait_on(result)
print ("Result: " + str(result))

if __name__=='__main__"':
main()

When executed, it produces the following output:

$ runcompss error_in_task.py

[INFO] Inferred PYTHON language

[INFO] Using default location for project file: /opt/COMPSs//Runtime/configuration/xml/
—projects/default_project.xml

[INFO] Using default location for resources file: /opt/COMPSs//Runtime/configuration/xml/
—resources/default_resources.xml

[INFO] Using default execution type: compss

WARNING: COMPSs Properties file is null. Setting default values

[(570) API] - Starting COMPSs Runtime v2.7 (build 20200519-1005.
—r6093e5ac94d67250e097a6fad9d3ec00d676febc)

[ERRMGR] - WARNING: Job 1 for running task 1 on worker localhost has failed; resubmitting,
—task to the same worker.

[ERRMGR] - WARNING: Task 1 execution on worker localhost has failed; rescheduling task,
—execution. (changing worker)

[ERRMGR] - WARNING: Job 2 for running task 1 on worker localhost has failed; resubmitting,
—task to the same worker.

[ERRMGR] - WARNING: Task 1 has already been rescheduled; notifying task failure.

[ERRMGR] - WARNING: Task 'error_in_task.increment' TOTALLY FAILED.

Possible causes:
-Exception thrown by task 'error_in_task.increment'.
-Expected output files not generated by task 'error_in_task.
—increment'.
-Could not provide nor retrieve needed data between master and
—worker.

Check files '/home/user/.COMPSs/error_in_task.py_01/jobs/job[1]2'] toy
—find out the error.

[ERRMGR] - ERROR: Task failed: [[Task id: 1], [Status: FAILED], [Core id: 0], [Priority:,
—false], [NumNodes: 1], [MustReplicate: false], [MustDistribute: false], [error_in_task.
—increment (STRING_T)1]

(continues on next page)

362 Chapter 11. Troubleshooting

COMPSs Documentation, 2.9

(continued from previous page)

[ERRMGR] - Shutting down COMPSs...
[4711) API] - Execution Finished
Shutting down the running process

Error running application

The output describes that there has been an issue with the task number 1. Since the default behaviour of the
runtime is to resubmit the failed task, task 2 also fails.

In this case, the runtime suggests to check the log files of the tasks: /home/user/.COMPSs/error_in_task.py_-
01/jobs/job[1]2]

Looking into the logs folder, it can be seen that the jobs folder contains the logs of the failed tasks:

$HOME/ . COMPSs

L— error_in_task.py_01
— jobs
— jobl_NEW.err
— jobl_NEW.out
— jobl_RESUBMITTED.err
— jobl_RESUBMITTED.out
— Jjob2_NEW.err
— job2_NEW.out
— Jjob2_RESUBMITTED.err
— job2_RESUBMITTED.out
— resources.log
— runtime.log
— tmpFiles

— workers

And the job1_NEW.err contains the complete traceback of the exception that has been raised (TypeError: cannot
concatenate 'str' and 'int' objects as consequence of using a string for the task input which tries to add

1):

[EXECUTOR] executeTask - Error in task execution
es.bsc.compss.types.execution.exceptions.JobExecutionException: Job 1 exit with value 1
at es.bsc.compss.invokers.external.piped.PipedInvoker.invokeMethod (PipedInvoker. java:78)
at es.bsc.compss.invokers.Invoker.invoke(Invoker. java:352)
at es.bsc.compss.invokers.Invoker.processTask(Invoker.java:287)
at es.bsc.compss.executor.Executor.executeTask(Executor. java:486)
at es.bsc.compss.executor.Executor.executeTaskWrapper (Executor. java:322)
at es.bsc.compss.executor.Executor.execute(Executor. java:229)
at es.bsc.compss.executor.Executor.processRequests(Executor. java:198)
at es.bsc.compss.executor.Executor.run(Executor.java:153)
at es.bsc.compss.executor.utils.ExecutionPlatform$2.run(ExecutionPlatform. java:178)
at java.lang.Thread.run(Thread. java:748)
Traceback (most recent call last):
File "/opt/COMPSs/Bindings/python/2/pycompss/worker/commons/worker.py", line 265, in task_
—execution
x*compss_kwargs)
File "/opt/COMPSs/Bindings/python/2/pycompss/api/task.py", line 267, in task_decorator
return self.worker_call(xargs, **kwargs)
File "/opt/COMPSs/Bindings/python/2/pycompss/api/task.py", line 1523, in worker_call
x*user_kwargs)
File "/home/user/temp/Bugs/documentation/error_in_task.py", line 6, in increment
return value + 1
TypeError: cannot concatenate 'str' and 'int' objects

11.1. How to debug 363

COMPSs Documentation, 2.9

Tip: Any exception raised from the task code will appear in the same way, showing the traceback helping to
identify the line which produced the exception and its reason.

11.1.3 C/C++ examples

11.1.3.1 Exception in the main code

TODO

Missing subsection

11.1.3.2 Exception in a task

TODO

Missing subsection

11.2 Common Issues

11.2.1 Tasks are not executed

If the tasks remain in Blocked state probably there are no existing resources matching the specific task constraints.
This error can be potentially caused by two facts: the resources are not correctly loaded into the runtime, or the
task constraints do not match with any resource.

In the first case, users should take a look at the resouces.log and check that all the resources defined in the
project.xml file are available to the runtime. In the second case users should re-define the task constraints taking
into account the resources capabilities defined into the resources.xml and project.xml files.

11.2.2 Jobs fail

If all the application’s tasks fail because all the submitted jobs fail, it is probably due to the fact that there is
a resource miss-configuration. In most of the cases, the resource that the application is trying to access has no
passwordless access through the configured user. This can be checked by:

e Open the project.xml. (The default file is stored under /opt/COMPSs/ Runtime/configuration/xml/
projects/project.xml)

e For each resource annotate its name and the value inside the User tag. Remember that if there is no User
tag COMPSs will try to connect this resource with the same username than the one that launches the main
application.

e For each annotated resourceName - user please try ssh user@resourceName. If the connection asks for a
password then there is an error in the configuration of the ssh access in the resource.

The problem can be solved running the following commands:

compss@bsc:~$ scp ~/.ssh/id_rsa.pub user@resourceName: ./myRSA.pub
compss@bsc:~$ ssh user@resourceName "cat myRSA.pub >> 7/.ssh/authorized_keys; rm ./myRSA.pub"

These commands are a quick solution, for further details please check the Additional Configuration Section.

364 Chapter 11. Troubleshooting

COMPSs Documentation, 2.9

11.2.3 Exceptions when starting the Worker processes

When the COMPSs master is not able to communicate with one of the COMPSs workers described in the project.xml
and resources.xzml files, different exceptions can be raised and logged on the runtime.log of the application. All of
them are raised during the worker start up and contain the [WorkerStarter| prefix. Next we provide a list with
the common exceptions:

InitNodeException Exception raised when the remote SSH process to start the worker has failed.
UnstartedNodeException Exception raised when the worker process has aborted.
Connection refused Exception raised when the master cannot communicate with the worker process (NIO).

All these exceptions encapsulate an error when starting the worker process. This means that the worker ma-
chine is not properly configured and thus, you need to check the environment of the failing worker. Further
information about the specific error can be found on the worker log, available at the working directory path in the
remote worker machine (the worker working directory specified in the project.xzml} file).

Next, we list the most common errors and their solutions:

java command not found Invalid path to the java binary. Check the JAVA HOME definition at the remote
worker machine.

Cannot create WD Invalid working directory. Check the rw permissions of the worker’s working directory.

No exception The worker process has started normally and there is no exception. In this case the issue is
normally due to the firewall configuration preventing the communication between the COMPSs master and
worker. Please check that the worker firewall has in and out permissions for TCP and UDP in the adaptor
ports (the adaptor ports are specified in the resources.xml file. By default the port rank is 43000-44000.

11.2.4 Compilation error: @Method not found

When trying to compile Java applications users can get some of the following compilation errors:

error: package es.bsc.compss.types.annotations does not exist
import es.bsc.compss.types.annotations.Constraints;
error: package es.bsc.compss.types.annotations.task does not exist
import es.bsc.compss.types.annotations.task.Method;
error: package es.bsc.compss.types.annotations does not exist
import es.bsc.compss.types.annotations.Parameter;
error: package es.bsc.compss.types.annotations.Parameter does not exist
import es.bsc.compss.types.annotations.parameter.Direction;
error: package es.bsc.compss.types.annotations.Parameter does not exist
import es.bsc.compss.types.annotations.parameter.Type;
error: cannot find symbol
QParameter(type = Type.FILE, direction = Direction.INOUT)
symbol: class Parameter
location: interface APPLICATION_Itf

error: cannot find symbol

@Constraints(computingUnits = "2")
symbol: class Constraints
location: interface APPLICATION_Itf

error: cannot find symbol
@Method(declaringClass = "application.ApplicationImpl")

(continues on next page)

11.2. Common Issues 365

COMPSs Documentation, 2.9

(continued from previous page)

symbol: class Method
location: interface APPLICATION_Itf

All these errors are raised because the compss-engine. jar is not listed in the CLASSPATH. The default COMPSs
installation automatically inserts this package into the CLASSPATH but it may have been overwritten or deleted.
Please check that your environment variable CLASSPATH containts the compss-engine. jar location by running
the following command:

$ echo $CLASSPATH | grep compss-engine

If the result of the previous command is empty it means that you are missing the compss-engine. jar package in
your classpath.

The easiest solution is to manually export the CLASSPATH variable into the user session:

$ export CLASSPATH=$CLASSPATH:/opt/COMPSs/Runtime/compss-engine.jar

However, you will need to remember to export this variable every time you log out and back in again. Consequently,
we recommend to add this export to the .bashrc file:

$ echo "# COMPSs variables for Java compilation" >> ~/.bashrc
$ echo "export CLASSPATH=$CLASSPATH:/opt/COMPSs/Runtime/compss-engine.jar" >> ~/.bashrc

Warning: The compss-engine. jar is installed inside the COMPSs installation directory. If you have
performed a custom installation, the path of the package may be different.

11.2.5 Jobs failed on method reflection

When executing an application the main code gets stuck executing a task. Taking a look at the runtime.log
users can check that the job associated to the task has failed (and all its resubmissions too). Then, opening the
jobX_NEW.out or the jobX_NEW.err files users find the following error:

[ERROR |es.bsc.compss.Worker |Executor] Can not get method by reflection
es.bsc.compss.nio.worker.executors.Executor$§JobExecutionException: Can not get method by,
—reflection

at es.bsc.compss.nio.worker.executors.JavaExecutor.executeTask(JavaExecutor.java:142)

at es.bsc.compss.nio.worker.executors.Executor.execute(Executor.java:42)

at es.bsc.compss.nio.worker.JobLauncher.executeTask(JobLauncher. java:46)

at es.bsc.compss.nio.worker.JobLauncher.processRequests(JobLauncher. java:34)

at es.bsc.compss.util.RequestDispatcher.run(RequestDispatcher. java:46)

at java.lang.Thread.run(Thread. java:745)
Caused by: java.lang.NoSuchMethodException: simple.Simple.increment(java.lang.String)

at java.lang.Class.getMethod(Class.java:1678)

at es.bsc.compss.nio.worker.executors.JavaExecutor.executeTask(JavaExecutor. java:140)

. 5 more

This error is due to the fact that COMPSs cannot find one of the tasks declared in the Java Interface. Commonly
this is triggered by one of the following errors:

e The declaringClass of the tasks in the Java Interface has not been correctly defined.
e The parameters of the tasks in the Java Interface do not match the task call.
e The tasks have not been defined as public.

366 Chapter 11. Troubleshooting

COMPSs Documentation, 2.9

11.2.6 Jobs failed on reflect target invocation null pointer

When executing an application the main code gets stuck executing a task. Taking a look at the runtime.log
users can check that the job associated to the task has failed (and all its resubmissions too). Then, opening the
jobX_NEW.out or the jobX_NEW.err files users find the following error:

[ERROR | es.bsc.compss.Worker | Executor]
java.lang.reflect.InvocationTargetException
at sun.reflect.NativeMethodAccessorImpl.invokeO(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl. java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:
~43)
at java.lang.reflect.Method.invoke(Method.java:606)
at es.bsc.compss.nio.worker.executors.JavaExecutor.executeTask(JavaExecutor.java:154)
at es.bsc.compss.nio.worker.executors.Executor.execute(Executor. java:42)
at es.bsc.compss.nio.worker.JobLauncher.executeTask(JobLauncher. java:46)
at es.bsc.compss.nio.worker.JobLauncher.processRequests(JobLauncher. java:34)
at es.bsc.compss.util.RequestDispatcher.run(RequestDispatcher. java:46)
at java.lang.Thread.run(Thread.java:745)
Caused by: java.lang.NullPointerException
at simple.Ll.printY(Ll.java:25)
at simple.Simple.task(Simple.java:72)
10 more

This cause of this error is that the Java object accessed by the task has not been correctly transferred and one or
more of its fields is null. The transfer failure is normally caused because the transferred object is not serializable.

Users should check that all the object parameters in the task are either implementing the serializable interface or
following the java beans model (by implementing an empty constructor and getters and setters for each attribute).

11.2.7 Tracing merge failed: too many open files

When too many nodes and threads are instrumented, the tracing merge can fail due to an OS limitation, namely:
the maximum open files. This problem usually happens when using advanced mode due to the larger number
of threads instrumented. To overcome this issue users have two choices. First option, use Fzxtrae parallel MPI
merger. This merger is automatically used if COMPSs was installed with MPI support. In Ubuntu you can install
the following packets to get MPI support:

$ sudo apt-get install libcr-dev mpich2 mpich2-doc

Please note that extrae is never compiled with MPI support when building it locally (with buildlocal command).

To check if COMPSs was deployed with MPI support, you can check the installation log and look for the following
Extrae configuration output:

Package configuration for Extrae VERSION based on extrae/trunk rev. 3966:
Installation prefix: /gpfs/apps/MN3/COMPSs/Trunk/Dependencies/extrae
Cross compilation: no

CC: gcc

CXX: g++

Binary type: 64 bits

MPI instrumentation: yes
MPI home: /apps/OPENMPI/1.8.1-mellanox
MPI launcher: /apps/OPENMPI/1.8.1-mellanox/bin/mpirun

On the other hand, if you already installed COMPSs, you can check FExtrae configuration executing the script
/opt/COMPSs/Dependencies/extrae/etc/configured.sh. Users should check that flags --with-mpi=/usr and

11.2. Common Issues 367

COMPSs Documentation, 2.9

--enable-parallel-merge are present and that MPI path is correct and exists. Sample output:

EXTRAE_HOME is not set. Guessing from the script invoked that Extrae was installed in /opt/
—COMPSs/Dependencies/extrae

The directory exists .. OK

Loaded specs for Extrae from /opt/COMPSs/Dependencies/extrae/etc/extrae-vars.sh

Extrae SVN branch extrae/trunk at revision 3966

Extrae was configured with:

$./configure --enable-gettimeofday-clock --without-mpi --without-unwind --without-dyninst --
—without-binutils --with-mpi=/usr --enable-parallel-merge --with-papi=/usr --with-java-jdk=/
—usr/lib/jvm/java-7-openjdk-amd64/ --disable-openmp --disable-nanos --disable-smpss --
—prefix=/opt/COMPSs/Dependencies/extrae --with-mpi=/usr --enable-parallel-merge --libdir=/
—opt/COMPSs/Dependencies/extrae/1ib

CC was gcc

CFLAGS was -g -02 -fno-optimize-sibling-calls -Wall -W
CXX was g++

CXXFLAGS was -g -02 -fno-optimize-sibling-calls -Wall -W

MPI_HOME points to /usr and the directory exists .. 0K

LIBXML2_HOME points to /usr and the directory exists .. OK

PAPI_HOME points to /usr and the directory exists .. 0K

DYNINST support seems to be disabled

UNWINDing support seems to be disabled (or not needed)

Translating addresses into source code references seems to be disabled (or not needed)

Please, report bugs to tools@bsc.es

Important: Disclaimer: the parallel merge with MPI will not bypass the system’s maximum number of open
files, just distribute the files among the resources. If all resources belong to the same machine, the merge will fail
anyways.

The second option is to increase the OS maximum number of open files. For instance, in Ubuntu add " ulimit
-n 40000 " just before the start-stop-daemon line in the do_start section.

11.2.8 Performance issues

11.2.8.1 Different work directories

Having different work directories (for master and workers) may lead to performance issues. In particular, if the work
directories belong to different mount points and with different performance, where the copy of files may be required.
For example, using folders that are shared across nodes in a supercomputer but with different performance (e.g.
scratch and projects in MareNostrum 4) for the master and worker workspaces.

368 Chapter 11. Troubleshooting

COMPSs Documentation, 2.9

11.3 Memory Profiling

COMPSs also provides a mechanism to show the memory usage over time when running Python applications. This
is particularly useful when memory issues happen (e.g. memory exhausted — causing the application crash), or
performance analysis (e.g. problem size scalability).

To this end, the runcompss and enqueue_compss commands provide the --python_memory_profile flag, which
provides a set of files (one per node used in the application execution) where the memory used during the execution
is recorded at the end of the application. They are generated in the same folder where the execution has been
launched.

Important: The memory-profiler package is mandatory in order to use the --python_memory_profile flag.

It can be easily installed with pip:

$ python -m pip install memory-profiler --user

Tip: If you want to store from the memory profiler in a different folder, export the COMPSS_WORKER_PROFILE_PATH
with the destination path:

$ export COMPSS_WORKER_PROFILE_PATH=/path/to/destination

When --python_memory_profile is included, a file with name mprofile_<DATE_TIME>.dat is generated for the
master memory profiling, while for the workers they are named <WORKER_NODE_NAME>.dat. These files can be
displayed with the mprof tool:

$ mprof plot <FILE>.dat

Figure 54: mprof plot example

11.3.1 Advanced profiling

For a more fine grained memory profiling and analysing the workers memory usage, PyCOMPSs provides the
@profile decorator. This decorator is able to display the memory usage per line of the code. It can be imported
from the PyCOMPSs functions module:

from pycompss.functions.profile import profile

This decorator can be placed over any function:

Over the @task decorator (or over the decorator stack of a task) This will display the memory usage in
the master (through standard output).

11.3. Memory Profiling 369

COMPSs Documentation, 2.9

Under the @task decorator: This will display the memory used by the actual task in the worker. The memory
usage will be shown through standard output, so it is mandatory to enable debug (--log_level=debug) and
check the job output file from .COMPSs/<app_folder>/jobs/.

Over a non task function: Will display the memory usage of the function in the master (through standard
output).

11.4 Known Limitations

The current COMPSs version has the following limitations:

11.4.1 Global

Exceptions The current COMPSs version is not able to propagate exceptions raised from a task to the master.
However, the runtime catches any exception and sets the task as failed.

Use of file paths The persistent workers implementation has a unique Working Directory per worker. That
means that tasks should not use hardcoded file names to avoid file collisions and tasks misbehaviours. We
recommend to use files declared as task parameters, or to manually create a sandbox inside each task execution
and/or to generate temporary random file names.

11.4.2 With Java Applications

Java tasks Java tasks must be declared as public. Despite the fact that tasks can be defined in the main class
or in other ones, we recommend to define the tasks in a separated class from the main method to force its
public declaration.

Java objects Objects used by tasks must follow the java beans model (implementing an empty constructor and
getters and setters for each attribute) or implement the serializable interface. This is due to the fact that
objects will be transferred to remote machines to execute the tasks.

Java object aliasing If a task has an object parameter and returns an object, the returned value must be a new
object (or a cloned one) to prevent any aliasing with the task parameters.

// @Method(declaringClass = "...")
// DummyObject incorrectTask (
// @Parameter(type = Type.OBJECT, direction = Direction.IN) DummyObject a,
// @Parameter(type = Type.OBJECT, direction = Direction.IN) DummyObject b
/7D
public DummyObject incorrectTask (DummyObject a, DummyObject b) {

if (a.getValue() > b.getValue()) {

return a;
}
return b;
}
// @Method(declaringClass = "...")

// Dummy0Object correctTask (
// @Parameter(type = Type.OBJECT, direction = Direction.IN) DummyObject a,
// @Parameter(type = Type.OBJECT, direction = Direction.IN) DummyObject b
/)5
public DummyObject correctTask (DummyObject a, DummyObject b) {

if (a.getValue() > b.getValue()) {

return a.clone();
}

return b.clone();

(continues on next page)

370 Chapter 11. Troubleshooting

COMPSs Documentation, 2.9

(continued from previous page)

public static void main() {
DummyObject al = new DummyObject();
DummyObject bl = new DummyObject();
DummyObject c1 = new DummyObject();
cl = incorrectTask(al, bl);
System.out.println("Initial value: " + cl.getValue());
al.modify();
bl.modify();
System.out.println("Aliased value: " + cl.getValue());

DummyObject a2 = new DummyObject();

DummyObject b2 = new DummyObject();

DummyObject c2 = new DummyObject();

c2 = incorrectTask(a2, b2);

System.out.println("Initial value: " + c2.getValue());
a2.modify();

b2.modify();

System.out.println("Non-aliased value: " + c2.getValue());

11.4.3 With Python Applications

Python constraints in the cloud When using python applications with constraints in the cloud the minimum
number of VMs must be set to 0 because the initial VM creation does not respect the tasks contraints. Notice
that if no contraints are defined the initial VMs are still usable.

Intermediate files Some applications may generate intermediate files that are only used among tasks and are
never needed inside the master’s code. However, COMPSs will transfer back these files to the master node at
the end of the execution. Currently, the only way to avoid transferring these intermediate files is to manually
erase them at the end of the master’s code. Users must take into account that this only applies for files
declared as task parameters and not for files created and/or erased inside a task.

User defined classes in Python User defined classes in Python must not be declared in the same file that
contains the main method (if __name__==__main__') to avoid serialization problems of the objects.

Python object hierarchy dependency detection Dependencies are detected only on the objects that are task
parameters or outputs. Consider the following code:

a.py
class A:
def __init__(self, b):
self.b =D
main.py

from a import A

from pycompss.api.task import task

from pycompss.api.parameter import *

from pycompss.api.api import compss_wait_on

O@task(obj = IN, returns = int)
def get_b(obj):
return obj.b

Otask(obj = INOUT)
def inc(obj):
obj += [1]

(continues on next page)

11.4. Known Limitations 371

COMPSs Documentation, 2.9

(continued from previous page)

def main():
my_a = A([5])
inc(my_a.b)
obj = get_b(my_a)
obj = compss_wait_on(obj)
print obj

if __name__ == '__main__
main()

Note that there should exist a dependency between A and A.b. However, PyCOMPSs is not capable to detect
dependencies of that kind. These dependencies must be handled (and avoided) manually.

Python modules with global states Some modules (for example logging) have internal variables apart from
functions. These modules are not guaranteed to work in PyCOMPSs due to the fact that master and worker
code are executed in different interpreters. For instance, if a logging configuration is set on some worker, it
will not be visible from the master interpreter instance.

Python global variables This issue is very similar to the previous one. PyCOMPSs does not guarantee that
applications that create or modify global variables while worker code is executed will work. In particular,
this issue (and the previous one) is due to Python’s Global Interpreter Lock (GIL).

Python application directory as a module If the Python application root folder is a python module (i.e: it
contains an __init__.py file) then runcompss must be called from the parent folder. For example, if the
Python application is in a folder with an __init__.py file named my_folder then PyCOMPSs will resolve all
functions, classes and variables as my_folder.object_name instead of object_name. For example, consider
the following file tree:

my_apps/
L — kmeans/

|: __init__.py
kmeans.py

Then the correct command to call this app is runcompss kmeans/kmeans.py from the my_apps directory.

Python early program exit All intentional, premature exit operations must be done with sys.exit. Py-
COMPSs needs to perform some cleanup tasks before exiting and, if an early exit is performed with sys.exit,
the event will be captured, allowing PyCOMPSs to perform these tasks. If the exit operation is done in a
different way then there is no guarantee that the application will end properly.

Python with numpy and MKL Tasks that invoke numpy and MKL may experience issues if tasks use a dif-
ferent number of MKL threads. This is due to the fact that MKL reuses threads along different calls and it
does not change the number of threads from one call to another.

11.4.4 With Services

Services types The current COMPSs version only supports SOAP based services that implement the WS inter-
operability standard. REST services are not supported.

372 Chapter 11. Troubleshooting

	Table of contents
	List of figures
	List of tables
	What is COMPSs?
	More information:

	Quickstart
	Install COMPSs
	Write your first app
	Useful information

	Installation and Administration
	Dependencies
	Build Dependencies
	Optional Dependencies

	Building from sources
	Post installation

	Pip
	Pre-requisites
	Installation
	Post installation

	Supercomputers
	Prerequisites
	Installation
	Configuration
	COMPSs Queue structure overview
	Configuration Files
	How are cfg files used in scripts?

	Post installation

	Additional Configuration
	Configure SSH passwordless
	Configure the COMPSs Cloud Connectors
	OCCI (Open Cloud Computing Interface) connector

	Configuration Files
	Resources file
	Project file
	Configuration examples
	Parallel execution on one single process configuration
	Cluster and grid configuration (static resources)
	Shared Disks configuration example
	Cloud configuration (dynamic resources)
	Cloud connectors: rOCCI
	Cloud connectors: JClouds
	Cloud connectors: Docker
	Cloud connectors: Mesos

	Services configuration

	Application development
	Java
	Programming Model
	Application Overview
	Task definition reference guide
	Task-definition Annotations
	Parameter-level annotations
	Constraints annotations
	Scheduler annotations

	Alternative method implementations
	Java API calls
	Managing Failures in Tasks
	Tasks Groups and COMPSs exceptions

	Application Compilation
	Application Execution

	Python Binding
	Programming Model
	Task Selection
	Function parameters
	Tasks within classes

	Task Parameters
	Objects
	Files
	Directories
	Collections
	Collections of files
	Dictionaries
	Streams
	Standard Streams

	Other Task Parameters
	Task time out
	Scheduler hints
	On failure task behaviour

	Task Parameters Summary
	Task Return
	Other task types
	Binary decorator
	OmpSs decorator
	MPI decorator
	COMPSs decorator
	Multinode decorator
	Reduction decorator
	Container decorator
	Other task types summary

	Task Constraints
	Multiple Task Implementations
	API
	Synchronization
	Local Decorator

	File/Object deletion
	Task Groups
	Other
	API Summary

	Failures and Exceptions

	Application Execution
	Environment
	Command

	Integration with Jupyter notebook
	Environment Variables
	API calls
	Notebook execution
	Notebook example

	Integration with Numba
	Basic usage
	Advanced usage
	Using Numba with GPUs

	C/C++ Binding
	Programming Model
	Binding API
	Functions file
	Additional source files
	Class Serialization
	Method - Task
	Task Constraints
	Task Versions

	Use of programming models inside tasks
	OmpSs

	Application Compilation
	Single architecture
	Multiple architectures
	Using OmpSs

	Application Execution
	Task Dependency Graph

	Constraints

	Execution Environments
	Master-Worker Deployments
	Local
	Executing COMPSs applications
	Prerequisites
	Runcompss command
	Running a COMPSs application
	Running Java applications
	Running Python applications
	Specific flags
	Worker cache
	Additional features
	Concurrent serialization
	Running C/C++ applications

	Walltime
	Additional configurations

	Results and logs
	Results
	Logs

	COMPSs Tools
	Application graph
	COMPSs Monitor
	Service configuration
	Usage
	Graphical Interface features

	Application tracing
	Trace Command
	Trace visualization

	COMPSs IDE

	Supercomputers
	Executing COMPSs applications
	Loading the COMPSs Environment
	COMPSs Environment Script
	COMPSs Environment Module
	Configuration Notes

	COMPSs Job submission
	Walltime
	PyCOMPSs within interactive jobs

	MareNostrum 4
	Basic queue commands
	Tracking COMPSs jobs

	MinoTauro
	Basic queue commands
	Tracking COMPSs jobs

	Nord 3
	Basic queue commands
	Tracking COMPSs jobs

	Enabling COMPSs Monitor
	Configuration
	Execution

	Docker
	What is Docker?
	Requirements
	Execution in Docker
	Execution step 1: Creation of the application image
	Execution step 2: Run the application

	Execution with TLS
	Execution results
	Execution examples

	Chameleon
	What is Chameleon?
	Execution in Chameleon

	Jupyter Notebook
	Notebook execution
	Notebook example
	Tips and Tricks
	Tasks information
	Tasks status
	Resources status
	Current task graph
	Complete task graph

	Agents Deployments
	Local
	Deploying a COMPSs Agent
	Executing an operation
	Modifying the available resources

	Supercomputers

	Schedulers

	Tracing
	COMPSs applications tracing
	Basic Mode
	Basic Mode Usage
	Instrumented Threads in Basic Mode
	Information Available in Basic Traces
	Basic Trace Example

	Advanced Mode
	Advanced Mode Usage
	Instrumented Threads in Advanced Mode
	Information Available in Advanced Traces
	Advanced Trace Example

	Trace for Agents
	Custom Installation and Configuration
	Custom Extrae
	Custom Configuration file

	Visualization
	Trace Loading
	Configurations
	View Adjustment

	Interpretation
	Analysis
	Graphical Analysis
	Numerical Analysis

	PAPI: Hardware Counters
	Paraver: configurations
	User Events in Python
	Events in main code
	Events in task code
	Result trace
	Practical example

	Persistent Storage
	First steps
	Defining the data model
	Java
	Python
	C/C++

	Interacting with the persistent storage
	Java
	Python
	C/C++

	Running with persistent storage
	Local
	Supercomputer

	COMPSs + dataClay
	COMPSs + dataClay Dependencies
	dataClay
	Other dependencies

	Enabling COMPSs applications with dataClay
	Java
	Python
	C/C++

	Executing a COMPSs application with dataClay
	Launching using an existing dataClay deployment
	Launching on queue system based environments

	COMPSs + Hecuba
	COMPSs + Hecuba Dependencies
	Hecuba
	Other dependencies

	Enabling COMPSs applications with Hecuba
	Java
	Python
	C/C++

	Executing a COMPSs application with Hecuba
	Launching using an existing Hecuba deployment
	Launching on queue system based environments

	COMPSs + Redis
	COMPSs + Redis Dependencies
	Redis Server
	Redis Cluster script
	COMPSs-Redis Bundle

	Enabling COMPSs applications with Redis
	Java
	Python
	C/C++

	Executing a COMPSs application with Redis
	Launching using an existing Redis Cluster
	Launching on queue system based environments

	Implement your own Storage interface for COMPSs
	Generic Storage Object Interface
	Generic Storage Runtime Interfaces
	Storage Interface usage
	Using runcompss
	Using enqueue_compss

	Sample Applications
	Java Sample applications
	Hello World
	Simple
	Increment
	Matrix multiplication
	Sparse LU decomposition
	BLAST Workflow

	Python Sample applications
	Simple
	Increment
	Kmeans
	Kmeans with Persistent Storage
	Matmul
	Lysozyme in water

	C/C++ Sample applications
	Simple
	Increment

	PyCOMPSs Player
	Requirements and Installation
	Requirements
	Installation

	Usage
	Start COMPSs infrastructure in your development directory
	Running applications
	Running the COMPSs monitor
	Running Jupyter notebooks
	Generating the task graph
	Tracing applications or notebooks
	Adding more nodes
	Removing existing nodes
	Stop pycompss

	PyCOMPSs Notebooks
	Syntax
	Basics of programming with PyCOMPSs
	Let’s get started with a simple example
	First step
	Second step
	Third step
	Fourth step
	Fifth step
	Sixth step (last)

	PyCOMPSs: Synchronization
	Import the PyCOMPSs library
	Start the runtime
	Importing task and parameter modules

	Declaring tasks
	Invoking tasks
	Accessing data outside tasks requires synchronization

	Stop the runtime

	PyCOMPSs: Using objects, lists, and synchronization
	Import the PyCOMPSs library
	Start the runtime
	Importing task and arguments directionality modules
	Declaring a class
	Invoking tasks
	Stop the runtime

	PyCOMPSs: Using objects, lists, and synchronization
	Import the PyCOMPSs library
	Start the runtime
	Importing task and arguments directionality modules
	Declaring a class
	Invoking tasks
	Stop the runtime

	PyCOMPSs: Using objects, lists, and synchronization. Using collections.
	Import the PyCOMPSs library
	Start the runtime
	Importing task and arguments directionality modules
	Declaring a class
	Invoking tasks
	Synchronizing results from tasks
	Accessing data in collections
	Accessing two collections
	Scattering data from a collection
	Stop the runtime

	PyCOMPSs: Using objects, lists, and synchronization. Using dictionary.
	Import the PyCOMPSs library
	Start the runtime
	Importing task and arguments directionality modules
	Declaring a class
	Invoking tasks
	Synchronizing results from tasks
	Accessing data in collections
	Accessing two collections
	Scattering data from a collection
	Stop the runtime

	PyCOMPSs: Using objects, lists, and synchronization. Managing fault-tolerance.
	Import the PyCOMPSs library
	Start the runtime
	Importing task and arguments directionality modules
	Declaring a class
	Invoking tasks
	Synchronizing results from tasks
	Stop the runtime

	PyCOMPSs: Using files
	Import the PyCOMPSs library
	Start the runtime
	Importing task and parameter modules
	Declaring tasks
	Invoking tasks
	Accessing data outside tasks requires synchronization

	Stop the runtime

	PyCOMPSs: Using constraints
	Import the PyCOMPSs library
	Starting runtime
	Importing task and arguments directionality modules
	Declaring tasks
	Invoking tasks
	Stop the runtime

	PyCOMPSs: Polymorphism
	Import the PyCOMPSs library
	Start the runtime
	Create a file to define the tasks
	Declaring tasks into the file
	Invoking tasks
	Accessing data outside tasks requires synchronization

	Stop the runtime

	PyCOMPSs: Other decorators - Binary
	Import the PyCOMPSs library
	Start the runtime
	Importing task and binary modules
	Declaring tasks
	Invoking tasks
	Accessing data outside tasks requires synchronization

	Stop the runtime

	PyCOMPSs: Integration with Numba
	Import the PyCOMPSs library
	Starting runtime
	Importing task and arguments directionality modules
	Importing other modules
	Declaring tasks
	Invoking tasks
	Stop the runtime

	Dislib tutorial
	Setup
	Distributed arrays
	Loading data
	Slicing
	Other functions

	Machine learning with dislib
	Close the session

	Machine Learning with dislib
	Setup
	Load the MNIST dataset
	dislib algorithms
	Preprocessing
	Clustering
	Classification
	Recommendation
	Model selection
	Others

	Examples
	KMeans
	GaussianMixture
	PCA
	RandomForestClassifier
	Close the session

	Hands-on
	Sort by Key
	First of all - Create a dataset
	Algorithm definition
	MAIN

	KMeans
	MAIN

	KMeans with Reduce
	MAIN

	Cholesky Decomposition/Factorization
	Task definitions
	Auxiliar functions
	MAIN Code

	Wordcount Exercise
	Sequential version

	Wordcount Solution
	Complete version

	Wordcount Solution (With reduce)
	Complete version

	Demos
	Accelerating parallel code with PyCOMPSs and Numba
	Demo Supercomputing 2019
	Paralellization with PyCOMPSs
	Accelerating the tasks with Numba

	Troubleshooting
	How to debug
	Java examples
	Exception in the main code
	Exception in a task

	Python examples
	Exception in the main code
	Exception in a task

	C/C++ examples
	Exception in the main code
	Exception in a task

	Common Issues
	Tasks are not executed
	Jobs fail
	Exceptions when starting the Worker processes
	Compilation error: @Method not found
	Jobs failed on method reflection
	Jobs failed on reflect target invocation null pointer
	Tracing merge failed: too many open files
	Performance issues
	Different work directories

	Memory Profiling
	Advanced profiling

	Known Limitations
	Global
	With Java Applications
	With Python Applications
	With Services

